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Abstract: 

This document presents the draft deliverable on mechanisms for self-association 
and self-organization of the ANA architecture. It encompasses bootstrapping 
mechanisms which enable self-association and on top of this new clustering 
algorithms, an addressing scheme and an intra-compartment routing scheme.  
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Executive Summary 

Mechanisms for self-association and self-organisation are fundamental to build an 
autonomous system. This deliverables presents the results achieved in task 2.4 (Self-
Association and Self-Organisation) of the ANA project. 

Starting a new network node in any environment requires the ability to sense this 
environment and associate itself accordingly. Therefore, the bootstrapping of the node 
has to encompass the setup of basic communication means. The attachment of a brick on 
top of the network device driver is the first step required and builds the basis for the ANA 
architecture. Higher layer compartments will associate themselves to the node 
compartment instantiated on any ANA node. Communication between compartments is 
realised by XRP (eXtended Representation Protocol) which is specified in more detail in 
deliverable D1.8. Encoded in XRP are the four main functions: publication of a 
compartment, revocation of a compartment, lookup of a compartment, and resolve of a 
compartment. This basic system provides the technical foundations to build self-
organisation mechanisms within ANA and is central to the ANA architecture. 

On top of this basic system three self-organisation mechanisms are designed: clustering, 
addressing, and intra-compartment routing. Two new, strictly localized algorithms for 
distributed, directed, budget-based clustering of large-scale networks are proposed: the 
Directed Budget-Based and the Directed Budget-Based with Random Delays algorithm. 
The algorithm utilizes local information about unclustered regions and directs the cluster 
tokens accordingly. An enhancement of this first algorithm was realized by introducing 
random delays when sending the cluster tokens into new areas. Secondly, we started to 
investigate a new addressing scheme where addresses are no longer permanent identifiers 
of a node but rather temporal leases of variable length combined with rendezvous 
schemes. If each node can have multiple addresses representing different possible paths 
towards its current location, address aggregation can be maintained at all times. 
Furthermore renumbering is much easier and a flexible addressing scheme can 
accommodate special connectivity scenarios more efficiently. Last, an intra-routing 
scheme for clustered network topologies is presented. Instead of building a shortest path 
graph only the routing scheme can utilize other metrics, too. A first prototype measures 
the stability of wireless links and uses this as a second metric to compute the forwarding 
graph. To keep the routing overhead small the fisheye principle is used. In a distance 
based routing protocol local information is held more up to date than information about 
far away nodes. Introducing a new metric opens new alternatives for the information 
distribution scheme.  

 



Table of Contents 

1 Introduction .................................................................................................. 1 

1.1 Structure of this Document ....................................................................... 1 

2 Algorithms and Mechanisms ...................................................................... 2 

2.1 Bootstrapping and Node Monitoring ......................................................... 2 

2.2 Clustering ................................................................................................. 9 

2.2.1 The Directed Budget-based clustering algorithm ........................... 10 

2.2.2 The Directed Budget-Based Algorithm with Random Delays ......... 11 

2.2.3 Some Concluding Remarks ........................................................... 12 

2.3 Address Allocation .................................................................................. 12 

2.3.1 Related Work ................................................................................. 14 

2.3.2 Proposal ......................................................................................... 15 

2.3.3 Discussion ..................................................................................... 16 

2.3.4 Open Issues ................................................................................... 17 

2.4 Intra-Compartment Routing .................................................................... 18 

2.4.1 Routing within a G*node ................................................................ 19 

2.4.2 Open Issues ................................................................................... 21 

3 Conclusion ................................................................................................. 22 

4 References ................................................................................................. 23 



 

FP6-IST-27489 ANA Project - Deliverable D2.6 –  
Self-Association and Self-Organization mechanisms    Page 1�  

1 INTRODUCTION  

An increasing complexity of setting up, maintaining, and managing networks burdens a 
huge overhead on network operators. One goal of autonomic networking is to develop 
mechanisms to make the network perform these operations autonomously. Booting a 
node autonomously into a network compartment requires an awareness of the system’s 
context and mechanisms to self-associate it with the network. Next, the node has to 
configure itself according to the sensed environment. It chooses one or more addresses it 
will be known by and make this information available to others. This addressing scheme 
has to be flexible enough that it can adjust itself to simple, multi-homing, or mobile 
scenarios. Based on the addressing information intra-compartment routing and 
forwarding has to be established. We have investigated hierarchical routing schemes with 
self-adapting routing metrics on each level. The routing scheme is supported by the 
clustering algorithm that allows a fast formation of clusters with low associated costs. 

This deliverable presents algorithms and evaluation results for these mechanisms 
developed for the ANA architecture. Furthermore, we describe how system internals can 
be presented to the user and how the user can interact with the system by expressing i.e. 
operational policies. 

 

1.1 Structure of this Document 
In section 2.1 the bootstrapping of an ANA node is presented including node monitoring. 
Clustering of nodes is described in section 2.2, followed by an address allocation scheme 
in section 2.3. An intra-compartment routing and forwarding scheme is presented in 
section 2.4. Last, in section 2.4.2 the yellow pages system of the ANA nodes and gateway 
mechanisms are introduced. A summary concludes this deliverable and provides 
directions for future work. 
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2 ALGORITHMS AND MECHANISMS 

The first draft of this deliverable presents ideas and first prototypes for self-association 
and self-organization. First, the bootstrapping of an ANA node is described, followed by 
clustering mechanism to group nodes. The third section introduces a novel approach to 
addressing in autonomous networks. Last, an intra-compartment routing mechanism 
based on the previously introduced clustering and address is introduced. 

2.1 Bootstrapping and Node Monitoring 
Bootstrapping in ANA includes two domains: the initialization of an ANA node in a new 
physical environment and also the startup of an autonomous service in a previously 
bootstrapped node. Bootstrapping of an autonomous functionality (node or service) can 
be decomposed in two steps: self-association and self-organization. In order of execution, 
the self-organization part usually comes after the self-association part. In this section we 
will detail on the self-association part of the bootstrap procedure and treat different self-
organization aspects in further sections of this deliverable. 

Self-association can also be decomposed in two steps: First the current context of the 
environment it should associate itself to has to be discovered. Second association 
protocols (transactions) for the environment (or some interesting parts of it) have to be 
executed. 

In this section, we will describe our proposals for the two mentioned steps of self-
association. A main constraint of the proposed solution is its adaptability. Indeed, today’s 
networking environments are very heterogeneous, i.e. composed of many different 
networks. A main goal of the ANA project is to increase this heterogeneity by allowing 
for “network innovation”. Thereby, the adaptability requirement for self-association 
mechanisms becomes very prominent. By adaptability, we mean that the same self-
association mechanisms applied by the autonomous node or service should be able to 
work inadvertently of the environments composition. 

 

2.1.1 Self association of an ANA node 
A functional block which is able to interact directly with this new physical environment 
(medium) has to be inserted into the Playground of an ANA node to enable the 
bootstrapping and building of complex functionalities. The idea is that this special 
functional block will build an initial (level-0) compartment that will help other services 
and compartments to bootstrap. 

 



 Level-0 Compartment: 
The Level-0 compartment is different from other compartments in its ability to bootstrap 
itself by using directly the physical medium and does not rely on any other compartment 
to provide it with communication facilities.  

This special compartment will then be able to do the necessary bridging between the 
ANA world, functioning with compartments, IDPs, Information Channels and all sorts of 
abstractions, and the “real” physical environment of the ANA node. Thereby, it will 
provide the basic ANA functionality that will facilitate the bootstrap of other functional 
blocks providing “higher-level” services.   

node N 

Level-0 FB 

“Higher” level FB 

Level-0 compartment 

ANA World 
Physical world 

Figure 1: Level-0 functional block 

 

Context discovery for the level-0 compartment: 
In an ANA node the Functional block providing the Level-0 compartment is assumed to 
be sitting on top of the physical medium. How it was able to access the hardware 
interfaces is purely a low level operating system issue and is outside of the scope of this 
document. This assumption covers the context discovery part of the bootstrap of the 
level-0 functional block. 

 

Self-association transactions for the level-0 compartment: 
Except to the node compartment (by publishing its presence), the level-0 functional block 
does not have to self-associate itself to any other compartment. Indeed, since it is 
supposed to offer the initial self-association facilities to other compartments, it should be 
“magically” already self-associated. Since this level-0 FB has access to the physical 
medium, it can discover its neighbour peers (i.e. self organize) by sending messages 
directly “on the wire” and therefore jump directly to the self-organization part of the 
bootstrap.   
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Naturally, since today’s networks have different physical media (hardware), chances that 
the same level-0 functional block is able to work on top of different underlying physical 
environments are thin. So in order to increase the adaptability of an ANA node to 
different physical environments, we need to provide it with multiple level-0 functional 
blocks bridging the gap between the ANA world and several different underlying 
systems. 

 

2.1.2 Self association of autonomous services: 
We assume that autonomous services associate themselves to an ANA node that had 
previously bootstrapped correctly. This means that a Level-0 compartment provider and 
maybe some higher level compartments are already instantiated. 

Considering that a service will need to self-associate itself, first to the node compartment 
and then probably to multiple different compartments, we would like to avoid having 
multiple context discovery and self-association mechanisms that are specific to each 
compartment. Therefore, we introduce a common communication scheme between 
functional blocks, as well as a generic API that will help in having the same context 
discovery and self-association mechanisms which work for all compartments.  

 

Common presentation layer: 
In order for a service to be able to interact with all the compartments in a similar manner 
and self-associate to them, there is a need for a common communication ground between 
the service and the compartment providing functional blocks. For this reason, in ANA we 
introduce a common presentation and binding layer shown in Figure 2.    
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Figure 2: The ANA common presentation and binding layer 
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Presentation + Binding Layer

Compartm-
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ANA node 
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This description layer is based on a common formatting of messages that follows the 
XRP (eXtended Representation Protocol) specification (see deliverable 1.8 
documentation). We will not speak here of technical details of XRP, but rather show how 
it is useful to self-association. Messages exchanged between functional blocks are of the 
following form (abstract form): 

 

Message Type Nb Arguments 

Arg1 Description Arg1 Value 

Arg2 Description Arg2 Value 

… 

 

The most important fields to notice in the above table are the message type and the 
arguments descriptions. These provide a very basic meta-data (information) about the 
message and the data it contains. By using these information fields, a functional block 
receiving some data that it can not handle can still have a semantic understanding of its 
nature. For example, an IPv4 compartment provider functional block receiving an IPv6 
address as argument in an XRP message will not know how to make use of it but is still 
able to understand that it is an address.  

The idea is then to use this description layer in order to establish a very minimal self-
association and context discovery protocol between the services and the compartment 
providing functional blocks. 

  

 Compartment generic API:  
Due to the simple meta-data provided by the presentation layer and with addition of some 
minimal conventions, the interaction between functional blocks is enabled. This eases the 
self-association process significantly. Our proposal is to extract the most common 
functionalities needed by all autonomous nodes and services to bootstrap. These 
functionalities are: 

 Publish: that allows a service to make itself visible to other compartment users 

 Un-publish: withdraw a service after it was published 

 Resolve: to obtain from a compartment an information channel to communicate 
with a certain compartment user. This functionality is vital for the self-
organization part of the bootstrap since there is a necessity to communicate with 
peer services.  

 Lookup: to obtain further information from a compartment about a certain 
compartment user. 
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These functionalities are needed by any type of service interested in associating itself to a 
compartment. We mandate that every compartment entity provides (or at least knows 
how to handle) these four functionalities as a basic generic API.  Therefore a minimal 
convention at the description layer is needed. This convention consists in assigning 
specific XRP message types and argument descriptions for the four functionalities above 
and their arguments. All compartment providers and users have to agree to this minimal 
convention. All functional blocks which are implemented so far and which use the ANA 
library implicitly adhere to this convention. The following table shows an example of a 
publish command sent through the description layer:  

 

Type = publish 2 

NAME “chat application” 

IDP 0xAABBCCDDEE 

 

 

The flexibility of the description layer allows the integration of new interactions between 
services and compartments, which might be needed for bootstrapping. 

 

 Context Discovery: 
As a first step of its self-association process, an autonomous service needs first to 
discover what compartments are present on the local ANA node. To do so, the service 
can query the node compartment using either the resolve or lookup primitives. Resolve 
primitive can be used when the service knows exactly the description of the compartment 
it is looking for and wants to immediately obtain and information channel to it. Lookup, 
on the other hand, can be used when a service is looking for a relaxed description of a 
group of compartments and wants to know what different options it has. For example a 
chat application wants to know which compartments are present on its node, before it 
decides to associate itself to one or many of them. Therefore, we suggest that all 
compartment provider functional blocks include keywords in their published description.  

For the currently implemented compartments, this common description is the keyword 
“compartment” published in the node compartment’s Key Value Repository. This way, 
our example chat application has only to query the node compartment with this agreed 
sub-description to obtain information about all the networking capabilities of its running 
ANA node. Afterwards, when the autonomous service wants to discover the context 
inside a specific compartment, e.g. the Ethernet one, it can simply use the same 
primitives: resolve and lookup in a similar way as with the node compartment. 

 

 



  Self-association transactions: 
By using the generic API, the same association mechanisms made by an autonomous 
service can be applicable to all compartments. These self-association mechanisms are 
publishing themselves and are obtaining communication channels to peers in order to 
start the self-organization process. Since all compartment provider functional blocks 
agree on the message type and argument descriptions of a publish command, they are all 
able to decode the message and treat it in a compartment specific way. We will see in a 
later paragraph a scenario showing how the meta-data contained in the publish message, 
can help an autonomous service attach to many different compartments. After publishing 
itself an autonomous service can use the resolve and lookup primitives as described 
before to obtain communication channels to peer services having published their presence 
in the compartment, 

 

2.1.3 Bootstrap scenario: 
To help better understand how these notions of level-0 compartment description layer and 
generic API are useful to self-association, we illustrate the bootstrapping procedure of the 
Ethernet and IP compartments already implemented in the current ANA core. 
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Figure 3: Bootstrap scenario of the IP compartment 

In this scenario we suppose that the node M is already bootstrapped. We will describe the 
chronological steps needed for node N and its Ethernet and IP functional blocks to 
bootstrap. 

 

Level-0 compartment bootstrap: 
1) First the Ethernet functional block in node N obtains access to the Ethernet 

interface. This step is independent of ANA business.  
2) It then associates itself to the node compartment inside node N by publishing its 

presence. To do so, it sends a publish request using the generic API to the node 
compartment. The request contains the IDP label “b” and the keywords 

node N 

ETH-FB 

IP-FB node M 

ANA World 
Ethernet LAN 

 Ethernet  

compartment 

ETH-FB 

IP-FB 

d b 
a 

Resolve (IP 
description) Publish (IP 

description, a) 
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description (“Ethernet”, “Compartment”). At this point, the IDP “b” becomes 
visible in the node compartment context. 

Autonomous IP compartment bootstrap: 
3) The IP functional block first discovers the networking capabilities of its node. To 

do this, it sends a lookup request, using the generic API to the node compartment. 
The query looks for any functional block that published itself with the keyword 
“compartment”. Since the node has only one compartment available (the Ethernet 
one), it returns the IDP label “b” to the IP functional block. 

4) Now the IP functional block will try to bootstrap itself in the Ethernet 
compartment. It will first try to discover its neighbour peers and then publish its 
presence. 

a. Using the generic API, the IP functional block sends a resolve request on 
IDP “b”. The resolve specifies that it wants to reach all peers matching an 
IP specific description in the entire Ethernet compartment. After the 
Ethernet compartment specific resolution has taken place, the IP 
functional block receives the IDP “c” attached to an information channel 
leading to the peer IP functional block on node M. 

b. Now, the IP functional block on node N wants to become visible in the 
Ethernet compartment. To do so, it sends a publish request on IDP “b”. It 
indicates to the Ethernet compartment a description of the service it wants 
to publish. It is important to note here that the Ethernet functional block on 
node N does not have to understand this description. In fact all it cares 
about is the fact that it is a service description. Now, all other Ethernet 
users that want to reach this IP functional block have to know this 
description and resolve it as in 4.a). For IP peers, this common description 
knowledge is an agreement among the IP compartment providers.  

5) Now that the IP functional block has an information channel leading to its 
neighbour peers, it can start all kinds of self-organization procedures, like address 
autoconfiguration, etc, that we will not talk about in this section. 

 

Note that the previous steps would have been exactly the same if node N had e.g. a 
Bluetooth functional block as a level-0 compartment due to the generic API and the 
common description layer. 

 

6) To finalize the bootstrap, the IP functional block finishes its self-association to the 
node compartment. It publishes its presence as being a functional block providing 
an IP compartment. The published description could be for example the two 
keywords (“IP, “compartment”). 

 

2.1.4 User control over bootstrap procedures: 
For the moment, not much focus has been put on the user control part since all the 
autonomous bootstrap procedures were still to be defined. At present, a status interface 
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has been developed to inform the user about what is going on in the minmex (published 
IDPs, present functional blocks).  

In the future the user should be able to influence the autonomous behaviour through 
compartment policies. As an example, if a user wants to forbid a file sharing application 
from accessing the internet, he could specify in the node compartment, a policy 
forbidding all functional blocks matching the file sharing application’s description from 
accessing the IP functional block. This way the node compartment will ignore all resolve 
requests targeted to the IP functional block, coming from file sharing applications. 
Furthermore, there can also be a policy in the IP compartment (local IP functional block), 
to drop all communication coming from a functional block matching the file-sharing 
description. It is noteworthy to mention that not all services will be fully autonomous, 
and can not decide on their own to which compartments to self-associate to. Indeed, in 
ANA there is an ongoing work on functional composition, where the goal is to design an 
“autonomous brain” that would associate the functional blocks in the right order to build 
the desired information flows. The human user will then be able to tune the bootstrapping 
procedure also on that side. 

2.2 Clustering 
One of first self-organization mechanism after bootstrapping a node into a new 
environment is associating the node with a cluster. A clustered network architecture is 
typically advantageous to be based on clusters of fixed size (reduced routing protocol 
overhead, better accommodating specific service requirements, etc). At the same time, it 
is very important that the self-organization process keeps the associated overhead under 
control and does not over consumes critical resources such as, e.g., the batteries of the 
sensor nodes [Krishnan06]. It is thus crucial that self-organization algorithms not only 
yield clusters of sizes close to the fixed targeted value, but also complete the network 
self-organization process within a short time, or by executing a low number of steps or 
requiring low message exchanges. 

Another constraint to consider when designing algorithms for self-association and self-
organization purposes is due to the fact that each individual node is typically bound to 
communicating with its immediate neighbors only. Long-haul communications 
(especially in wireless environments) are not desired due to severe energy constraints or 
not possible due to non-connectivity (especially for not wireless environments). 
Consequently, it is important to design algorithms and protocols which are localized or 
even strictly localized, as explained in [Estrin99]. A strictly localized protocol is a 
localized protocol in which all information processed by a node is either: (a) local in 
nature or (b) global in nature, but obtainable by querying only the node's neighbors or 
itself [Chan04]. The local interactions are primarily enabled through the exchange of 
periodic local HELLO messages, which account for building and maintaining the local 
neighborhood and may also carry any information needed to achieve the desired global 
objectives. 
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Two algorithms for message efficient distributed clustering are proposed in [Krishnan06]. 
Note that they have been proposed mainly for wireless sensor networks but the main 
principles apply for any self-organization and self-association scenario. The goal is to 
decompose an autonomous network into clusters of bounded size while keeping the 
overall message complexity low. These algorithms are supplemented by a randomized 
technique for specifying the clustering initiation process. The focus of the 
aforementioned algorithms is to design distributed, energy efficient algorithms for 
network organization.  

Recently there has been a focus on designing localized algorithms for various network 
functions, such as flooding, broadcasting and spanner construction [Orecchia04], 
[Tseng03]. These algorithms utilize the existing periodic HELLO message exchanges to 
maintain and update the local neighborhood of each node (through HELLO exchanges 
with first-hop neighbors) and to build the desired structure over it.  

In the work that has so far been undertaken under ANA, [Tzevelekas06], a new strictly 
localized clustering protocol is proposed for wireless sensor networks which aims at 
decomposing large scale networks into non-overlapping clusters of fixed size, an 
important aspect in autonomic networks like the ANA environment. The primary focus of 
this work is to provide a fast network decomposition algorithm, which constructs clusters 
with sizes (in number of nodes) as close as possible to a desired upper bound. The 
proposed algorithm is considered to be executed in rounds that coincide with the periodic 
exchanges of HELLO messages and takes advantage of their presence in order to convey 
(with minimal additional overhead through a flag) some elementary and limited 
clustering process status information. 

The proposed work falls into the category of strictly localized protocols, since all the 
required information for the protocol to run at each node is obtainable from the 
immediate, local neighbors of that node. There is no communication between nodes that 
are more than one hop away at any stage of execution of the proposed clustering protocol. 

2.2.1 The Directed Budget-based clustering algorithm 
The two aforementioned algorithms distribute tokens (i.e., a given number of permits to 
join a cluster) blindly in the sense that the state of the neighbor (i.e., whether already 
clustered or not) is not taken into consideration. Consequently, tokens are wasted (or 
returned) when distributed to nodes which are already clustered by another initiator. This 
blindness is the reason for their poor clustering performance in terms of cluster sizes or 
time to network decomposition completion (Persistent). To reduce the inefficiencies due 
to the blindness of the token distribution process, it is proposed in [Tzevelekas06], that 
nodes update their neighbors regarding their clustering status as described next. This low 
overhead status exchange will enhance the effectiveness of the token distribution process, 
as nodes will utilize this status information in order to direct tokens towards areas of (yet) 
unclustered neighboring nodes and reduce token waste. 
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In the proposed Directed Budget-Based (DBB) algorithm, the unclustered neighborhood 
is identified for each node after each HELLO message exchange and tokens are 
distributed (equally) over this unclustered neighborhood. Compared with an algorithm 
distributing tokens over the physical topology (e.g. the Rapid algorithm in [Krishnan06]), 
the proposed DBB algorithm directs the token distribution process away from clustered 
regions by operating on the unclustered (as opposed to the physical) topology. The 
clustered and unclustered topologies typically consist of multiple island-regions scattered 
throughout the network. Each island-region of clustered nodes may be viewed as defining 
a boundary that bounces (or reflects) away any incoming (and bound to be wasted or 
returned) tokens and directs the clustering (token distribution) process towards 
unclustered regions. 

2.2.2 The Directed Budget-Based Algorithm with Random 
Delays 

The proposed DBB algorithm saves tokens and is expected to enhance the clustering 
process by reducing or eliminating inter-cluster token distribution contentions. Tokens 
are also likely to be wasted due to intra-cluster token distribution contentions arising 
when two nodes have common (firsthop) neighbors. High node densities result in many 
nodes having common (first-hop) neighbors in their local neighborhood. Thus, when two 
such nodes take part in the growing of a cluster under a given initiator (i.e. they both have 
part of the budget to distribute further), it is likely that they will pick the same common 
neighbor (or neighbors) to forward part of their tokens to. The intra-cluster token 
distribution process contentions for Rapid, Persistent and DBB are due to the fact that 
these algorithms proceed with the budget distribution at each node immediately upon 
receiving a budget from one of their neighbors. 

However, the overall clustering performance of the DBB algorithm would be enhanced if, 
for example, each distributing node was aware that some of its neighbors were already 
clustered due to receiving tokens from the local neighborhood and diverted its tokens 
towards another unclustered node, even if that required that it waited for a later round of 
HELLO message exchanges to complete its budget distribution. The DBB algorithm with 
Random Delays can be seen as a modified version of the DBB algorithm aiming to 
reduce primarily intra- but also inter- cluster token distribution contentions. The basic 
idea is to delay the token forwarding to a neighbor by a random number of rounds (or 
HELLO exchanges) to reduce the probability of token distribution contention (notice that 
this Random Delay is zero for the DBB algorithm). This way, the neighboring, 
distributing nodes will likely be aware of earlier budget distribution effects on the local 
neighborhood (which nodes are clustered/not clustered) and thus divert their tokens 
towards unclustered local neighbors only. The cost associated with the introduction of 
Random Delays in the DBB algorithm is an additional delay in the overall time until the 
network decomposition is completed. This additional delay results in “de-synchronizing” 
the execution of the potentially synchronized token distribution process at neighboring 
nodes and reduces the likelihood for collisions.  
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2.2.3 Some Concluding Remarks 
Two new, strictly localized algorithms for distributed, directed, budget-based clustering 
of large-scale networks are proposed: the Directed Budget-Based (DBB) and the Directed 
Budget-Based with Random Delays (DBB-RD) algorithm. The basic, innovative idea is 
to utilize clustering status information that can be readily available to reduce or eliminate 
token distribution contentions (both intra- and inter- cluster) that severely limit the 
effectiveness of earlier budget-based approaches. The algorithms take advantage of the 
periodic exchanges of standard HELLO messages between neighbor nodes (apparent in 
real-world networks) to update their physical, as well as unclustered topology of their 
local neighborhood. They use the updated topology to direct distributing tokens away 
from already clustered nodes (both intra- and inter- clustered), thus significantly 
improving the overall clustering performance. Furthermore, the algorithms involve only 
moderate overhead (a simple 0/1 flag at the end of each HELLO message) to the network. 

The proposed algorithms could be useful for organizing ANA nodes in clusters of a 
targeted size by considering carefully overhead, decomposition time and divergence from 
the target size, when the ANA nodes exhibit characteristics such as those described in 
[Tzevelekas06]. In addition to serving self-organization and self-association needs in 
ANA, such clustering schemes could be utilized also in the context of service discovery, 
as it may become part of some of the service discovery phases (discussed in detail later), 
e.g., the service advertising phase that could build a set of ANA nodes that are aware of 
the existence of some service. It is not mandatory to be used for self-organization or self-
association in ANA. Rather they are proposals to be considered as possible future 
directions when considering the fact that neighborhood discovery may be seen as an 
alternative form of service discovery. Here, the role of discovery is undertaken by the 
exchanged HELLO messages and the result is the organization of the network in cluster 
in an efficient and scalable manner rather than the location of a particular node. 

2.3 Address Allocation 
Address allocation and routing are intrinsically related. Hierarchical addressing and 
routing is essential for large-scale networks to keep the size of routing and forwarding 
tables manageable by aggregating multiple forwarding entries that can be represented by 
a single entry. The set of aggregated addresses is expressed as their common fixed-size 
binary prefix. This introduces certain partitioning requirements: a) address blocks must 
be of size power of 2, and b) if any address within a contiguous block requires a separate 
forwarding entry, the block has to be split up into multiple smaller parts. An alternative 
approach to circumvent this problem is to perform a longest-prefix comparison to 
determine the matching forwarding entry. Longest prefix matching, which is used by the 
current Internet routing and forwarding mechanisms, trades off computational simplicity 
for reduced forwarding table size. 
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Address aggregation forms a tree overlaying the overall connectivity graph. If nodes are 
permitted to keep their addresses when changing their location in the connectivity graph, 
then the overlaying tree is typically not a proper subset of the connectivity graph. This 
can happen, for example, if a customer node or network chooses to change network 
providers. In the Internet, the logical addressing tree is rooted at a fictitious node with 
address 0.0.0.0. Address allocation is handled recursively from the top to bottom of the 
tree. Because addresses are globally unique and have a fixed length, there are obvious 
fragmentation challenges. Historically, addresses have been allocated and configured 
manually and statically and have taken the role of quasi-stable node identifiers for servers 
in the Internet. Therefore, dynamic address allocation has been limited to the very edge of 
the network using DHCP. Overall, this approach significantly limits the room for 
autonomous (i.e. local) decisions about the size and structure of subnetworks. 

While this aspect can be somewhat mitigated through larger address spaces, such as 
suggested for IPv6, this “solution” does not address the essential fundamental design 
constraints associated with inflexible address allocation. Also, a larger address space 
poses its own new performance problem. For the current 32-bit IPv4 addresses, fast 
lookup technology for high-speed routers can barely keep up with current link speeds. 
Performing longest-prefix match lookups for a larger address space will aggravate this 
challenge considerably. 

When designing a new addressing and address allocation scheme, additional important 
design goals need to be taken into account to ensure that a proposal is truly future-proof. 
First, communication paradigms such as multi-homing, mobility and multicast break 
address aggregation, since in these cases a single stable address cannot have rendezvous 
semantics and topological relevance at the same time. This is the classical ID/locator split 
problem. Another important goal is path diversity. Currently, network providers typically 
run single-path routing protocols and end users have no control over the end-to-end 
traffic path. To improve communication quality, robustness, and economic competition, it 
has been argued, e.g. in [Yang07], that more control should be given to end users. 

Our proposed solution is based on a hierarchy of labels of which only the top level needs 
to be globally coordinated. A variable-size list of fixed-size local labels is used as strictly 
topology-oriented address. This can be regarded as a simple yet comprehensive solution 
for the ID/locator problem. The foremost goal is to be feasible for a future clean-slate 
approach to internetworking, regardless of other network protocol functionality. One of 
the key requirements is the potential for forwarding performance at line speeds, i.e. 
implementation in low-level system components. We design a simple addressing scheme 
that delegates as much control as possible to local agreement and requires only minimal 
global administrative coordination. It is combined with an agile rendezvous service 
operating between DNS and the addressing layer. Both schemes take into account the 
economic and/or political realities of an Internet formed by a diverse set of networks. 

The addressing scheme can unify many different forwarding paradigms, such as 
destination routing, source routing, virtual circuit, or combinations of these. In 
cooperation with the rendezvous service, the system can support different communication 
paradigms, such as multicast, mobility, etc. The introduction of a separate rendezvous 
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service enables the decoupling and reorganization of functionality that is currently 
performed in the IP forwarding plane (e.g. policy-based routing or traffic engineering) or 
the DNS naming plane (e.g. load-balancing). This leaves the addressing and forwarding 
plane lean, flexible and essentially strategy-free, which should result in enhanced clarity 
and hopefully performance. 

2.3.1  Related Work 

There are many ongoing standardization activities [HIP] and existing technology 
standards, such as GRE, MPLS, Mobile IP, etc., that address subsets of this problem 
domain. Further, the IRTF routing working group [RRG] has produced a number of 
interesting proposals to alleviate global routing concerns related to address aggregation. 

Many of the recent proposals for DHT-based lookup services can also be considered as 
related work. One particular example is the Internet Indirection Infrastructure (I3) 
[Stoica04]. It contains many of the mechanisms proposed in our scheme and covers some 
of the same basic ground in the overall problem domain, such as supporting multicast and 
mobility. However, it also differs in a number of key properties. First, it is a hybrid 
rendezvous and forwarding mechanism, whereas we propose two separate mechanisms. 
Further, it is intrinsically tied to the notion of flat DHT-like data structures. For example, 
it requires large randomly chosen labels to minimize identifier collisions in the absence of 
centralized administration. Ultimately, it is thus inherently limited to being a scenario-
specific overlay network. In contrast, our work is tuned for low-level widespread usage 
under realistic assumptions. These assumptions include the support for control and 
delegation in a hierarchical rendezvous structure. 

Similar proposals for addressing and routing have been given in the NIMROD 
[Castineyra96] and NIRA [Yang07] architectures. Both of them provide mechanisms for 
client networks to discover the internetwork topology, thus enabling them to compute 
routes for packet delivery. In particular, NIMROD uses hierarchical addresses to 
represent networks and network elements. It provides a map-distribution mechanism to 
inform individual network nodes about the topology of particular regions in the hierarchy. 
However, the proposal does not explain how NIMROD can efficiently fit into the current 
policy-based routing paradigm. In addition, NIMROD effectively mandates source 
routing (potentially combined with virtual circuit forwarding) and does not support 
destination-based routing. NIRA, on the other hand, is quite similar to our approach in 
terms of basic design aspects, and it is designed for the current customer-provider based 
routing policy. In NIRA, each network is assigned a number of addresses. Each address 
denotes a path from a top-level provider to the network. A domain level route can be 
determined by concatenating a source and a destination address. However, as a source 
routing scheme, NIRA requires the source network to specify the entire inter-domain 
routing paths, which leaves transit networks with no control over their traffic. Also, 
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NIRA is somewhat incomplete in that route discovery is limited to paths along a strict 
customer/provider hierarchy with only limited support for peering routes. 

In contrast, our approach attempts to achieve more than previous work by designing an 
autonomous address allocation scheme that increases flexibility and allows shared control 
over routing choices. At the same time, we attempt to design a more general proposal that 
also includes solutions for the general ID/locator split problem. 

2.3.2  Proposal 
The actual Internet topology is a meshed graph with some hierarchy (often characterized 
as a power-law hierarchical graph). In contrast, hierarchical IP addressing establishes a 
strict tree relationship between networks and nodes, originating at a virtual root node with 
IP address 0.0.0.0. All paths in the network that do not follow the single addressing tree 
cause a distortion of the address aggregation scheme. There are several ways in which a 
different addressing and rendezvous scheme can alleviate the situation: 

• If each node can have multiple addresses representing different possible paths 
towards its current location, address aggregation can be maintained at all times. 

• By allowing variable-length addresses, the overall network does not have to settle 
for an either too small (IPv4) or too big (IPv6) address space. Instead, it is often 
possible for core nodes to forward packets based on only a small address prefix, 
while any number of nodes in an arbitrary topology can still be supported. 
Address space fragmentation can be contained to those areas in the global 
network that effectively cause the fragmentation. 

• Eliminating the inherent assumption that addresses are permanent identifiers 
makes renumbering easier. 

• Supporting relative addresses as well as absolute addresses increases flexibility to 
accommodate special connectivity scenarios efficiently. 

The addressing scheme described here satisfies all the above goals. In addition, it unifies 
a variety of addressing approaches for different forwarding paradigms and thereby helps 
eliminating or at least clarifying cumbersome middle-box functionality. 

An address is a stack of fixed-size integer labels. Top-level transit networks are assigned 
a unique label each by a centralized authority, such as IANA. We consider the set of 
these networks as the nucleus of the global Internet and denote it as core. The overall 
Internet is formed by other networks directly or indirectly interconnecting with this core. 
All other addressing is localized and potentially uses dynamic leases rather than 
permanent address allocation - ultimately a local decision. Within a network, each host 
and subnetwork is assigned a local label. Host and subnetwork labels are drawn from the 
same local label space in each network. Typically, a customer network needs to be an 
assigned a local label by a provider network that it connects to, but not vice versa. When 
networks interconnect, they can also assign each other local labels. 



A stack of labels leading from a core network to another network or end system forms an 
absolute address for this entity and also directly describes the path from the top-level 
network to the network or end system. Multiple paths result in multiple addresses being 
available for an entity. On the other hand, the addressing scheme also supports using a 
label stack as a relative address beginning at any particular network, if each network 
along the path has assigned a local label to the next network. 

 

 
Figure 4: Addressing scheme example 

To illustrate the addressing scheme, consider Figure 4. Networks A, B, C, and D form the 
core. Other ISP and customers networks are connected hierarchically to the core and have 
peering links with each other. The core networks are shown with capital letters. Other 
networks are also shown with a globally unique capital letter for easier referencing. Local 
address labels are denoted by lower-case letters. For example, Network S receives two 
absolute addresses D.b.a and D.a.b representing the two paths leading from the core to 
network. The addressing scheme and corresponding routing mechanisms operate at the 
inter-domain level exclusively. By choosing appropriate source and destination addresses, 
end systems can thus control the path inter-domain through the network. 

2.3.3  Discussion 
Some considerations are still preliminary, as we further develop this proposal. However, 
several promising observations can be made about the addressing system. The simplest 
and probably most common case is given by communication paths that lead from an end 
system to the core following customer-provider links and then back “out” to another end 
system following provider-customer links. The term “valley-free” route has been coined 
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e responses. Thereby, a node 

s assume symmetric paths at the 

appropriate. Short request/reply 
interactions will not incur any path setup overhead at all. 

2.3.4  Open Issues 

for this scenario [Yang07]. In this case, a multi-homed sender can choose the outbound 
part of the end-to-end path by selecting from its outgoing links. A multi-homed receiver 
can choose the inbound part of the path for future incoming traffic by using the 
appropriate source address in outgoing messages. Each end system is requested to use the 
latest received source address as destination address for futur
can control which path future incoming messages will take. 

Assuming that individual address labels are rather small (our current working assumption 
is 16 bits), it is feasible to eliminate the separate addressing schemes to identify transport 
protocols (protocol number) and application instances (port number). Instead, all 
addressing needs can be integrated into a single network-layer addressing scheme. This 
scheme can easily be augmented by giving forwarders the ability to rewrite source 
addresses and keep forwarding state indexed by the rewritten label stack. This essentially 
reproduces NAT functionality, but now it is integrated into the architecture as a first-class 
citizen. Even further, this functionality can be used to efficiently support mobility, similar 
to existing proposals for Mobile NAT [Buddhikot05]. As mentioned before, address 
labels are only leased to the networks and nodes. Since nodes can have multiple addresses 
at the same time and a correspondent node can be informed about the impeding address 
change by using the new address as source address, a make-before-break hand-over 
mechanism can be supported without requiring any further specialized control protocol. 
In fact, an end system does not even have to be aware of its absolute address, if it only 
acts a transport client, i.e. if it is always the initiator of a transport association. A message 
can be sent without a source address at all and the absolute source address is gradually 
built by intermediate systems. All these scheme
respective routing granularity at which they operate. 

The collection of mechanisms proposed here permit the construction of internetworking 
communication that seamlessly supports arbitrary combinations of datagram routing and 
virtual path service. Traditional virtual circuit protocols suffer from path setup latency 
and overhead associated with per-flow state maintenance and cleanup complexity. Since 
our proposal does not require a separate signaling protocol, it is possible to piggyback 
control onto data messages and avoid a separate path setup latency, similar to XTP 
[Strayer92]. The establishment of non-default paths and/or addresses does not require 
per-flow state, but per-flow state can be uheysed where 

The simple and most common case assumption is that a core networks form a very dense 
mesh and only valley-free paths are being used. In reality, the second assumption will not 
hold often enough, so that alternative scenarios have to be studied. The goal is to provide 
mechanisms for flexible path discovery different policies along paths that include peering 
links. Various techniques are possible to discover such paths and mediate between the 
potentially diverging interests of various network operators and customer networks. We 
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reliminary results are published as part of the NIRA 

roposal is still in its early stages, a number of smaller issues can be expected to 
arise once we arrive at a more specific specification and prototype implementation of this 

net they do not use a fixed address 
pace but can assign arbitrary address sizes to each level in the cluster hierarchy. An 

example Netsukuku hierarchy is shown in Figure 5. 

 

will study the trade-offs in this problem domain and in particular, will consider the 
business framework and economic incentives of participants. 

Although the addressing scheme operates at the inter-domain level, resilience and 
recovery need to be studied. Some p
study [Yang07]. We also note that resilience is studied in WP3.3 of the ANA project and 
hope to benefit from those findings. 

As this p

scheme. 

2.4 Intra-Compartment Routing 
Intra-compartment routing has to be applied to small networks like a WLAN cloud or a 
sensor network but also to very large networks like an IP compartment. For the later 
clustering as shown in chapter 2.2 can be used to build manageable topologies. The work 
on intra-compartment routing is inspired by the Netsukuku routing and clustering work 
proposed in [NETS]. Netsukuku uses clusters to build a distributed system up to the scale 
of the current Internet. But in contrast to the Inter
s

Figure 5: Hierarchical clustering of Netsukuku 

 

0.2.1.0.5
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s exist. The node is part of GGGnode 2. 

ace for each level of the hierarchy in the 

node as the sender the forwarding process 
recursively calculates the border nodes at each level of the hierarchy until the address of 

ting protocol. They use QSPN2 as the 

on the characteristics of the G*node and the level in the Netsukuku hierarchy. 

The figure shows a Netsukuku hierarchy which is structured in 5 levels as it would like if 
all possible addresses are taken by a node. The hierarchy is constructed by aggregating a 
set of nodes – nine in the example – and grouping them into a so called Gnode. These 
Gnodes themselves act as normal nodes and can be aggregated to a GGnode and so on. 
The address of a node is composed by concatenating the addresses of all G*nodes in the 
hierarchy the node lies within. An example node address is: (0.)2.1.0.5. On the top level 
of the hierarchy only one G*node exists which we give the address 0. Therefore, this 0 is 
usually omitted. On the forth level 4 GGGnode
On the third level the node is grouped into GGnode 1 and on the first level in Gnode 0. 
Within this Gnode the node has the address 5.  

A routing protocol distributes topology information to all nodes within a G*node. Every 
node has to store the routing information for all nodes in all G*nodes it inherits through 
the hierarchy. Assuming an 8 bit address sp
above example leads to 256*5 = 1280 entries in the forwarding table for 85 = 32767 
nodes which are addressable in the network. 

To forward a packet through the network a node first has to identify the level in the 
hierarch where the higher level G*node addresses of the node itself matches the 
destination address. On this level the routing protocol provides a path from the node to 
the G*node with the same address as the destination on this level. The forwarding process 
on this level returns the next hop G*node and a border node – which of course is a 
G*node of the next lower level in the hierarchy – which acts as a gateway to this G*node. 
If the border node is not in the same G

the next hop within the Gnode is returned. 

2.4.1 Routing within a G*node 
The authors of Netsukuku propose their own routing protocol called QSPN2 [QSPN] but 
Netsukuku itself is independent of the active rou
routing protocol an each level in the hierarchy. In our simulation we used a modified 
version of FSR (fisheye state routing) [Iwata99]. 

Organising a network in a hierarchy as Netsukuku does makes the network easily scale to 
a large size but has some requirements to the routing protocol. First, the routing protocol 
depends 
Second, the routing protocol of an autonomous system must be adaptable to a variety of 
metrics. 

G*nodes are expected to vary significantly depending on the characteristics of the 
physical nodes and the level in the hierarchy. A G*node consisting of wireless nodes only 
has different requirements towards the routing algorithm compared to mixed 
wired/wireless G*node or an all fixed nodes G*node. The independence of the routing 
protocol allows two ways to explore: First, the use of different routing protocols in 
different G*nodes. That would require that during the G*node creation the nodes would 
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des 

erent nodes in the G*nodes and their missions. The routing 

n other information. Using the fisheye analogy FSR distributes 

he node is no longer a direct 

additional input. Besides building shortest paths to all known destination – the distance in 

have to negotiate which routing protocol to use and that mobile nodes must be capable of 
executing a range of different routing protocols. The later could be solved by on-demand 
downloading of the routing protocol program provided that trust issues and heterogeneity 
of end systems can be solved. Second, the same routing protocol is used in all G*no
and can identify the G*node’s characteristics on its own and adapt itself accordingly. 
This requires the negotiation and publication of the used metrics within the G*nodes. 

Furthermore, the routing protocol must be able to adapt to different metrics. The metrics 
used to construct the forwarding graph depend on the application requirements. Currently 
most routing protocols use shortest path algorithms to compute the shortest paths to all 
possible destinations using hop count as the metric. But other application might regard 
path stability higher than end to end delay. Within Task 3.3 “Resilience Framework” a set 
of quality of service metrics for resilience are defined. Other quality of service metrics 
encompasses performance and security. Again the used metrics within different G*nodes 
may vary according to the diff
protocol must be open enough to use the required metric or a combination of metrics to 
create the forwarding graph.  

We used the fisheye principle introduced in FSR as the foundation of our experiments. 
Routing updates are sent to neighbouring nodes periodically containing any new 
information the node has obtained since the last update. By defining update scopes and 
update intervals some information about the system’s topology is distributed more often 
to neighbouring nodes tha
topology information about close by nodes three times as often as topology information 
about nodes farer away.  

As a first metric we used link stability in a wireless network environment. First results 
show the space which can be explored. Since routing updates are sent periodically to all 
neighbours – broadcast with TTL 1 – monitoring how high the loss rate of routing 
message is easy. Routing updates are sent periodically every five seconds. Not receiving 
an update message is recorded as a packet loss and the link stability is decreased. Three 
consecutive missed update messages indicate that t
neighbour. We currently investigate which other metrics can be used to calculate the path 
stability to other nodes and how they can be measured. 

To accomplish the exchange of the measured parameters the message format of FSR had 
to be extended in two ways: First, the locally monitored downlink stability of all 
neighbouring nodes is included in each update message. This information is included in a 
variable length list between the message header and the topology information. The length 
of this list depends on the number of neighbours the host has discovered. For now the 
complete list is published in each routing update message which introduces an overhead 
to every message. In order to reduce this overhead we think about restricting the list to 
entries which parameters have changed by a certain threshold. Further investigations have 
to show how to balance the savings I overhead and the inaccuracy in the metric 
computation. Second, the uplink stability to all neighbours is added to each topology 
entry. To calculate the forwarding graph the node can use this stability information as an 
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g – or 

nt more often to 
neighbouring nodes than the information about nodes below this limit. 

2.4.2 

alues. Furthermore, scope 

f an end-to-end path can improve the metric computation for the path to the 

priate in-path functional block which can run in 
user or – more likely – in kernel space.  

hop count to other nodes is inherently included in the topology information – a node can 
calculate the most stable path to all destinations – which might be undesirably lon
the shortest path to all destination with a minimum stability (if such a path exists). 

Secondly, we investigated the scope definition. Introducing a second metric into the 
routing algorithm for the shortest path calculation enables more choices in the definition 
of the routing update scope. Instead of sending changed topology information about 
nodes with a routing distance below a defined limit more often than the information for 
nodes farer away we used the path stability as the metric. Information about nodes to 
which a path exists which exceeds a defined stability limit is se

Open Issues 
The next steps include the design of a uniform interface to enable the configuration of the 
routing protocol. The node must be able to set which metrics to use for the shortest path 
calculation and which relation to use to compare two (sets of) v
definitions and update intervals must be provided by the node. 

An other open issue is to explore ways to gather needed information depending on the 
used metric. To improve the link stability metric we used in our first experiments we 
envision using statistics gathered while forwarding regular traffic. Depending on the 
technology of the nodes and challenges experienced in the network link layer statistic can 
be used for this. Furthermore, we envision using statistics gathered on the transport level. 
The quality o
destination. 

Finally, a prototype for the ANA framework will be implemented. It will be a functional 
block that runs in the user space part of the MINMEX only as today’s routing protocols 
are running in user space. The MINMEX provides an easy and universal interface to 
update the forwarding table of the appro
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3 CONCLUSION 

In this deliverable we present fundamental building blocks for autonomic networking 
systems. The bootstrapping procedure provides the basis for the ANA architecture. The 
node compartment is created where following compartments can publish themselves, un-
publish themselves, lookup other compartments and resolve other compartments. These 
functionalities enable self-association and self-organization mechanisms to be build. 
Examples of such self-organization mechanisms have been presented next. Our research 
on directed budget based clustering has been published in [Tzevelekas06]. It significantly 
improves the clustering process by utilizing local information which neighbouring nodes 
are not yet part of the cluster. Secondly, a design for a new addressing scheme has been 
introduced. It is based on variable length addresses which are temporarily assigned to the 
node in contrast to today’s fixed length permanent addresses. Last, an intra-compartment 
routing scheme has been presented. It is designed to calculate the forwarding table based 
on multiple metrics. A first prototype using the link stability as an additional metric to the 
distance metric showed to be promising. 

In the upcoming months research in task 2.4 will concentrate on three objectives: First, 
design and development of generic self-association and self-organization algorithms to 
allow the FBs of a compartment to “bootstrap” communications. Secondly, continue 
ongoing work on the proposed “simple addressing scheme” that aims to provide scalable 
and efficient support for multi-homing and mobility. And thirdly, explore the design 
space for the routing scheme in all its dimensions. For all these activities prototypes will 
be implemented which will operate on the ANA MINMEX system. Therefore, the next 
deliverable will be software package and an accompanying document. 
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