

ANA Project

Autonomic Network Architecture

ana
autonomic network architecture

Sixth Framework Programme

Priority FP6-2004-IST-4

Situated and Autonomic Communications (SAC)

Project Number: FP6-IST-27489

Deliverable D2.6

Design and Evaluation of Self-Association
and Self-Organization Mechanisms for

Network Compartments

Version 1.0

ANA Project
Autonomic Network Architecture

ana
autonomic network architecture

Project Number FP6-IST-27489

Project Name ANA - Autonomic Network Architecture

Document Number FP6-IST-27489/WP2/D2.6

Document Title
Design and Evaluation of Self-Association and Self-
Organization Mechanisms for Network
Compartments

Workpackage WP2

Editor Marcus Schöller (NEC)

Authors

Ghazi Bouabene (UBasel),
Martin Karsten (UWater),
Konstantinos Oikonomou (NKUA),
Marcus Schöller (NEC)

Reviewers Christophe Jelger (UBasel)

Dissemination level Public

Contractual delivery date 31st December 2007

Delivery Date 13th February 2008

Version 1.0

Abstract:

This document presents the draft deliverable on mechanisms for self-association
and self-organization of the ANA architecture. It encompasses bootstrapping
mechanisms which enable self-association and on top of this new clustering
algorithms, an addressing scheme and an intra-compartment routing scheme.

Keywords:

Bootstrapping, Self-Association, Clustering, Addressing, Intra-Compartment Routing,
Self-Organization

Change Note:

Executive Summary

Mechanisms for self-association and self-organisation are fundamental to build an
autonomous system. This deliverables presents the results achieved in task 2.4 (Self-
Association and Self-Organisation) of the ANA project.

Starting a new network node in any environment requires the ability to sense this
environment and associate itself accordingly. Therefore, the bootstrapping of the node
has to encompass the setup of basic communication means. The attachment of a brick on
top of the network device driver is the first step required and builds the basis for the ANA
architecture. Higher layer compartments will associate themselves to the node
compartment instantiated on any ANA node. Communication between compartments is
realised by XRP (eXtended Representation Protocol) which is specified in more detail in
deliverable D1.8. Encoded in XRP are the four main functions: publication of a
compartment, revocation of a compartment, lookup of a compartment, and resolve of a
compartment. This basic system provides the technical foundations to build self-
organisation mechanisms within ANA and is central to the ANA architecture.

On top of this basic system three self-organisation mechanisms are designed: clustering,
addressing, and intra-compartment routing. Two new, strictly localized algorithms for
distributed, directed, budget-based clustering of large-scale networks are proposed: the
Directed Budget-Based and the Directed Budget-Based with Random Delays algorithm.
The algorithm utilizes local information about unclustered regions and directs the cluster
tokens accordingly. An enhancement of this first algorithm was realized by introducing
random delays when sending the cluster tokens into new areas. Secondly, we started to
investigate a new addressing scheme where addresses are no longer permanent identifiers
of a node but rather temporal leases of variable length combined with rendezvous
schemes. If each node can have multiple addresses representing different possible paths
towards its current location, address aggregation can be maintained at all times.
Furthermore renumbering is much easier and a flexible addressing scheme can
accommodate special connectivity scenarios more efficiently. Last, an intra-routing
scheme for clustered network topologies is presented. Instead of building a shortest path
graph only the routing scheme can utilize other metrics, too. A first prototype measures
the stability of wireless links and uses this as a second metric to compute the forwarding
graph. To keep the routing overhead small the fisheye principle is used. In a distance
based routing protocol local information is held more up to date than information about
far away nodes. Introducing a new metric opens new alternatives for the information
distribution scheme.

Table of Contents

1 Introduction .. 1

1.1 Structure of this Document ... 1

2 Algorithms and Mechanisms .. 2

2.1 Bootstrapping and Node Monitoring ... 2

2.2 Clustering ... 9

2.2.1 The Directed Budget-based clustering algorithm 10

2.2.2 The Directed Budget-Based Algorithm with Random Delays 11

2.2.3 Some Concluding Remarks ... 12

2.3 Address Allocation .. 12

2.3.1 Related Work ... 14

2.3.2 Proposal ... 15

2.3.3 Discussion ... 16

2.3.4 Open Issues ... 17

2.4 Intra-Compartment Routing .. 18

2.4.1 Routing within a G*node .. 19

2.4.2 Open Issues ... 21

3 Conclusion ... 22

4 References ... 23

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 1�

1 INTRODUCTION

An increasing complexity of setting up, maintaining, and managing networks burdens a
huge overhead on network operators. One goal of autonomic networking is to develop
mechanisms to make the network perform these operations autonomously. Booting a
node autonomously into a network compartment requires an awareness of the system’s
context and mechanisms to self-associate it with the network. Next, the node has to
configure itself according to the sensed environment. It chooses one or more addresses it
will be known by and make this information available to others. This addressing scheme
has to be flexible enough that it can adjust itself to simple, multi-homing, or mobile
scenarios. Based on the addressing information intra-compartment routing and
forwarding has to be established. We have investigated hierarchical routing schemes with
self-adapting routing metrics on each level. The routing scheme is supported by the
clustering algorithm that allows a fast formation of clusters with low associated costs.

This deliverable presents algorithms and evaluation results for these mechanisms
developed for the ANA architecture. Furthermore, we describe how system internals can
be presented to the user and how the user can interact with the system by expressing i.e.
operational policies.

1.1 Structure of this Document
In section 2.1 the bootstrapping of an ANA node is presented including node monitoring.
Clustering of nodes is described in section 2.2, followed by an address allocation scheme
in section 2.3. An intra-compartment routing and forwarding scheme is presented in
section 2.4. Last, in section 2.4.2 the yellow pages system of the ANA nodes and gateway
mechanisms are introduced. A summary concludes this deliverable and provides
directions for future work.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 2�

2 ALGORITHMS AND MECHANISMS

The first draft of this deliverable presents ideas and first prototypes for self-association
and self-organization. First, the bootstrapping of an ANA node is described, followed by
clustering mechanism to group nodes. The third section introduces a novel approach to
addressing in autonomous networks. Last, an intra-compartment routing mechanism
based on the previously introduced clustering and address is introduced.

2.1 Bootstrapping and Node Monitoring
Bootstrapping in ANA includes two domains: the initialization of an ANA node in a new
physical environment and also the startup of an autonomous service in a previously
bootstrapped node. Bootstrapping of an autonomous functionality (node or service) can
be decomposed in two steps: self-association and self-organization. In order of execution,
the self-organization part usually comes after the self-association part. In this section we
will detail on the self-association part of the bootstrap procedure and treat different self-
organization aspects in further sections of this deliverable.

Self-association can also be decomposed in two steps: First the current context of the
environment it should associate itself to has to be discovered. Second association
protocols (transactions) for the environment (or some interesting parts of it) have to be
executed.

In this section, we will describe our proposals for the two mentioned steps of self-
association. A main constraint of the proposed solution is its adaptability. Indeed, today’s
networking environments are very heterogeneous, i.e. composed of many different
networks. A main goal of the ANA project is to increase this heterogeneity by allowing
for “network innovation”. Thereby, the adaptability requirement for self-association
mechanisms becomes very prominent. By adaptability, we mean that the same self-
association mechanisms applied by the autonomous node or service should be able to
work inadvertently of the environments composition.

2.1.1 Self association of an ANA node
A functional block which is able to interact directly with this new physical environment
(medium) has to be inserted into the Playground of an ANA node to enable the
bootstrapping and building of complex functionalities. The idea is that this special
functional block will build an initial (level-0) compartment that will help other services
and compartments to bootstrap.

 Level-0 Compartment:
The Level-0 compartment is different from other compartments in its ability to bootstrap
itself by using directly the physical medium and does not rely on any other compartment
to provide it with communication facilities.

This special compartment will then be able to do the necessary bridging between the
ANA world, functioning with compartments, IDPs, Information Channels and all sorts of
abstractions, and the “real” physical environment of the ANA node. Thereby, it will
provide the basic ANA functionality that will facilitate the bootstrap of other functional
blocks providing “higher-level” services.

node N

Level-0 FB

“Higher” level FB

Level-0 compartment

ANA World
Physical world

Figure 1: Level-0 functional block

Context discovery for the level-0 compartment:
In an ANA node the Functional block providing the Level-0 compartment is assumed to
be sitting on top of the physical medium. How it was able to access the hardware
interfaces is purely a low level operating system issue and is outside of the scope of this
document. This assumption covers the context discovery part of the bootstrap of the
level-0 functional block.

Self-association transactions for the level-0 compartment:
Except to the node compartment (by publishing its presence), the level-0 functional block
does not have to self-associate itself to any other compartment. Indeed, since it is
supposed to offer the initial self-association facilities to other compartments, it should be
“magically” already self-associated. Since this level-0 FB has access to the physical
medium, it can discover its neighbour peers (i.e. self organize) by sending messages
directly “on the wire” and therefore jump directly to the self-organization part of the
bootstrap.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 3�

Naturally, since today’s networks have different physical media (hardware), chances that
the same level-0 functional block is able to work on top of different underlying physical
environments are thin. So in order to increase the adaptability of an ANA node to
different physical environments, we need to provide it with multiple level-0 functional
blocks bridging the gap between the ANA world and several different underlying
systems.

2.1.2 Self association of autonomous services:
We assume that autonomous services associate themselves to an ANA node that had
previously bootstrapped correctly. This means that a Level-0 compartment provider and
maybe some higher level compartments are already instantiated.

Considering that a service will need to self-associate itself, first to the node compartment
and then probably to multiple different compartments, we would like to avoid having
multiple context discovery and self-association mechanisms that are specific to each
compartment. Therefore, we introduce a common communication scheme between
functional blocks, as well as a generic API that will help in having the same context
discovery and self-association mechanisms which work for all compartments.

Common presentation layer:
In order for a service to be able to interact with all the compartments in a similar manner
and self-associate to them, there is a need for a common communication ground between
the service and the compartment providing functional blocks. For this reason, in ANA we
introduce a common presentation and binding layer shown in Figure 2.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 4�

Figure 2: The ANA common presentation and binding layer

 Services Other FBs

 …

Presentation + Binding Layer

Compartm-
ents

ANA node

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 5�

This description layer is based on a common formatting of messages that follows the
XRP (eXtended Representation Protocol) specification (see deliverable 1.8
documentation). We will not speak here of technical details of XRP, but rather show how
it is useful to self-association. Messages exchanged between functional blocks are of the
following form (abstract form):

Message Type Nb Arguments

Arg1 Description Arg1 Value

Arg2 Description Arg2 Value

…

The most important fields to notice in the above table are the message type and the
arguments descriptions. These provide a very basic meta-data (information) about the
message and the data it contains. By using these information fields, a functional block
receiving some data that it can not handle can still have a semantic understanding of its
nature. For example, an IPv4 compartment provider functional block receiving an IPv6
address as argument in an XRP message will not know how to make use of it but is still
able to understand that it is an address.

The idea is then to use this description layer in order to establish a very minimal self-
association and context discovery protocol between the services and the compartment
providing functional blocks.

 Compartment generic API:
Due to the simple meta-data provided by the presentation layer and with addition of some
minimal conventions, the interaction between functional blocks is enabled. This eases the
self-association process significantly. Our proposal is to extract the most common
functionalities needed by all autonomous nodes and services to bootstrap. These
functionalities are:

 Publish: that allows a service to make itself visible to other compartment users

 Un-publish: withdraw a service after it was published

 Resolve: to obtain from a compartment an information channel to communicate
with a certain compartment user. This functionality is vital for the self-
organization part of the bootstrap since there is a necessity to communicate with
peer services.

 Lookup: to obtain further information from a compartment about a certain
compartment user.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 6�

These functionalities are needed by any type of service interested in associating itself to a
compartment. We mandate that every compartment entity provides (or at least knows
how to handle) these four functionalities as a basic generic API. Therefore a minimal
convention at the description layer is needed. This convention consists in assigning
specific XRP message types and argument descriptions for the four functionalities above
and their arguments. All compartment providers and users have to agree to this minimal
convention. All functional blocks which are implemented so far and which use the ANA
library implicitly adhere to this convention. The following table shows an example of a
publish command sent through the description layer:

Type = publish 2

NAME “chat application”

IDP 0xAABBCCDDEE

The flexibility of the description layer allows the integration of new interactions between
services and compartments, which might be needed for bootstrapping.

 Context Discovery:
As a first step of its self-association process, an autonomous service needs first to
discover what compartments are present on the local ANA node. To do so, the service
can query the node compartment using either the resolve or lookup primitives. Resolve
primitive can be used when the service knows exactly the description of the compartment
it is looking for and wants to immediately obtain and information channel to it. Lookup,
on the other hand, can be used when a service is looking for a relaxed description of a
group of compartments and wants to know what different options it has. For example a
chat application wants to know which compartments are present on its node, before it
decides to associate itself to one or many of them. Therefore, we suggest that all
compartment provider functional blocks include keywords in their published description.

For the currently implemented compartments, this common description is the keyword
“compartment” published in the node compartment’s Key Value Repository. This way,
our example chat application has only to query the node compartment with this agreed
sub-description to obtain information about all the networking capabilities of its running
ANA node. Afterwards, when the autonomous service wants to discover the context
inside a specific compartment, e.g. the Ethernet one, it can simply use the same
primitives: resolve and lookup in a similar way as with the node compartment.

 Self-association transactions:
By using the generic API, the same association mechanisms made by an autonomous
service can be applicable to all compartments. These self-association mechanisms are
publishing themselves and are obtaining communication channels to peers in order to
start the self-organization process. Since all compartment provider functional blocks
agree on the message type and argument descriptions of a publish command, they are all
able to decode the message and treat it in a compartment specific way. We will see in a
later paragraph a scenario showing how the meta-data contained in the publish message,
can help an autonomous service attach to many different compartments. After publishing
itself an autonomous service can use the resolve and lookup primitives as described
before to obtain communication channels to peer services having published their presence
in the compartment,

2.1.3 Bootstrap scenario:
To help better understand how these notions of level-0 compartment description layer and
generic API are useful to self-association, we illustrate the bootstrapping procedure of the
Ethernet and IP compartments already implemented in the current ANA core.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 7�

Figure 3: Bootstrap scenario of the IP compartment

In this scenario we suppose that the node M is already bootstrapped. We will describe the
chronological steps needed for node N and its Ethernet and IP functional blocks to
bootstrap.

Level-0 compartment bootstrap:
1) First the Ethernet functional block in node N obtains access to the Ethernet

interface. This step is independent of ANA business.
2) It then associates itself to the node compartment inside node N by publishing its

presence. To do so, it sends a publish request using the generic API to the node
compartment. The request contains the IDP label “b” and the keywords

node N

ETH-FB

IP-FB node M

ANA World
Ethernet LAN

 Ethernet

compartment

ETH-FB

IP-FB

d b
a

Resolve (IP
description) Publish (IP

description, a)

c

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 8�

description (“Ethernet”, “Compartment”). At this point, the IDP “b” becomes
visible in the node compartment context.

Autonomous IP compartment bootstrap:
3) The IP functional block first discovers the networking capabilities of its node. To

do this, it sends a lookup request, using the generic API to the node compartment.
The query looks for any functional block that published itself with the keyword
“compartment”. Since the node has only one compartment available (the Ethernet
one), it returns the IDP label “b” to the IP functional block.

4) Now the IP functional block will try to bootstrap itself in the Ethernet
compartment. It will first try to discover its neighbour peers and then publish its
presence.

a. Using the generic API, the IP functional block sends a resolve request on
IDP “b”. The resolve specifies that it wants to reach all peers matching an
IP specific description in the entire Ethernet compartment. After the
Ethernet compartment specific resolution has taken place, the IP
functional block receives the IDP “c” attached to an information channel
leading to the peer IP functional block on node M.

b. Now, the IP functional block on node N wants to become visible in the
Ethernet compartment. To do so, it sends a publish request on IDP “b”. It
indicates to the Ethernet compartment a description of the service it wants
to publish. It is important to note here that the Ethernet functional block on
node N does not have to understand this description. In fact all it cares
about is the fact that it is a service description. Now, all other Ethernet
users that want to reach this IP functional block have to know this
description and resolve it as in 4.a). For IP peers, this common description
knowledge is an agreement among the IP compartment providers.

5) Now that the IP functional block has an information channel leading to its
neighbour peers, it can start all kinds of self-organization procedures, like address
autoconfiguration, etc, that we will not talk about in this section.

Note that the previous steps would have been exactly the same if node N had e.g. a
Bluetooth functional block as a level-0 compartment due to the generic API and the
common description layer.

6) To finalize the bootstrap, the IP functional block finishes its self-association to the
node compartment. It publishes its presence as being a functional block providing
an IP compartment. The published description could be for example the two
keywords (“IP, “compartment”).

2.1.4 User control over bootstrap procedures:
For the moment, not much focus has been put on the user control part since all the
autonomous bootstrap procedures were still to be defined. At present, a status interface

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 9�

has been developed to inform the user about what is going on in the minmex (published
IDPs, present functional blocks).

In the future the user should be able to influence the autonomous behaviour through
compartment policies. As an example, if a user wants to forbid a file sharing application
from accessing the internet, he could specify in the node compartment, a policy
forbidding all functional blocks matching the file sharing application’s description from
accessing the IP functional block. This way the node compartment will ignore all resolve
requests targeted to the IP functional block, coming from file sharing applications.
Furthermore, there can also be a policy in the IP compartment (local IP functional block),
to drop all communication coming from a functional block matching the file-sharing
description. It is noteworthy to mention that not all services will be fully autonomous,
and can not decide on their own to which compartments to self-associate to. Indeed, in
ANA there is an ongoing work on functional composition, where the goal is to design an
“autonomous brain” that would associate the functional blocks in the right order to build
the desired information flows. The human user will then be able to tune the bootstrapping
procedure also on that side.

2.2 Clustering
One of first self-organization mechanism after bootstrapping a node into a new
environment is associating the node with a cluster. A clustered network architecture is
typically advantageous to be based on clusters of fixed size (reduced routing protocol
overhead, better accommodating specific service requirements, etc). At the same time, it
is very important that the self-organization process keeps the associated overhead under
control and does not over consumes critical resources such as, e.g., the batteries of the
sensor nodes [Krishnan06]. It is thus crucial that self-organization algorithms not only
yield clusters of sizes close to the fixed targeted value, but also complete the network
self-organization process within a short time, or by executing a low number of steps or
requiring low message exchanges.

Another constraint to consider when designing algorithms for self-association and self-
organization purposes is due to the fact that each individual node is typically bound to
communicating with its immediate neighbors only. Long-haul communications
(especially in wireless environments) are not desired due to severe energy constraints or
not possible due to non-connectivity (especially for not wireless environments).
Consequently, it is important to design algorithms and protocols which are localized or
even strictly localized, as explained in [Estrin99]. A strictly localized protocol is a
localized protocol in which all information processed by a node is either: (a) local in
nature or (b) global in nature, but obtainable by querying only the node's neighbors or
itself [Chan04]. The local interactions are primarily enabled through the exchange of
periodic local HELLO messages, which account for building and maintaining the local
neighborhood and may also carry any information needed to achieve the desired global
objectives.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 10�

Two algorithms for message efficient distributed clustering are proposed in [Krishnan06].
Note that they have been proposed mainly for wireless sensor networks but the main
principles apply for any self-organization and self-association scenario. The goal is to
decompose an autonomous network into clusters of bounded size while keeping the
overall message complexity low. These algorithms are supplemented by a randomized
technique for specifying the clustering initiation process. The focus of the
aforementioned algorithms is to design distributed, energy efficient algorithms for
network organization.

Recently there has been a focus on designing localized algorithms for various network
functions, such as flooding, broadcasting and spanner construction [Orecchia04],
[Tseng03]. These algorithms utilize the existing periodic HELLO message exchanges to
maintain and update the local neighborhood of each node (through HELLO exchanges
with first-hop neighbors) and to build the desired structure over it.

In the work that has so far been undertaken under ANA, [Tzevelekas06], a new strictly
localized clustering protocol is proposed for wireless sensor networks which aims at
decomposing large scale networks into non-overlapping clusters of fixed size, an
important aspect in autonomic networks like the ANA environment. The primary focus of
this work is to provide a fast network decomposition algorithm, which constructs clusters
with sizes (in number of nodes) as close as possible to a desired upper bound. The
proposed algorithm is considered to be executed in rounds that coincide with the periodic
exchanges of HELLO messages and takes advantage of their presence in order to convey
(with minimal additional overhead through a flag) some elementary and limited
clustering process status information.

The proposed work falls into the category of strictly localized protocols, since all the
required information for the protocol to run at each node is obtainable from the
immediate, local neighbors of that node. There is no communication between nodes that
are more than one hop away at any stage of execution of the proposed clustering protocol.

2.2.1 The Directed Budget-based clustering algorithm
The two aforementioned algorithms distribute tokens (i.e., a given number of permits to
join a cluster) blindly in the sense that the state of the neighbor (i.e., whether already
clustered or not) is not taken into consideration. Consequently, tokens are wasted (or
returned) when distributed to nodes which are already clustered by another initiator. This
blindness is the reason for their poor clustering performance in terms of cluster sizes or
time to network decomposition completion (Persistent). To reduce the inefficiencies due
to the blindness of the token distribution process, it is proposed in [Tzevelekas06], that
nodes update their neighbors regarding their clustering status as described next. This low
overhead status exchange will enhance the effectiveness of the token distribution process,
as nodes will utilize this status information in order to direct tokens towards areas of (yet)
unclustered neighboring nodes and reduce token waste.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 11�

In the proposed Directed Budget-Based (DBB) algorithm, the unclustered neighborhood
is identified for each node after each HELLO message exchange and tokens are
distributed (equally) over this unclustered neighborhood. Compared with an algorithm
distributing tokens over the physical topology (e.g. the Rapid algorithm in [Krishnan06]),
the proposed DBB algorithm directs the token distribution process away from clustered
regions by operating on the unclustered (as opposed to the physical) topology. The
clustered and unclustered topologies typically consist of multiple island-regions scattered
throughout the network. Each island-region of clustered nodes may be viewed as defining
a boundary that bounces (or reflects) away any incoming (and bound to be wasted or
returned) tokens and directs the clustering (token distribution) process towards
unclustered regions.

2.2.2 The Directed Budget-Based Algorithm with Random
Delays

The proposed DBB algorithm saves tokens and is expected to enhance the clustering
process by reducing or eliminating inter-cluster token distribution contentions. Tokens
are also likely to be wasted due to intra-cluster token distribution contentions arising
when two nodes have common (firsthop) neighbors. High node densities result in many
nodes having common (first-hop) neighbors in their local neighborhood. Thus, when two
such nodes take part in the growing of a cluster under a given initiator (i.e. they both have
part of the budget to distribute further), it is likely that they will pick the same common
neighbor (or neighbors) to forward part of their tokens to. The intra-cluster token
distribution process contentions for Rapid, Persistent and DBB are due to the fact that
these algorithms proceed with the budget distribution at each node immediately upon
receiving a budget from one of their neighbors.

However, the overall clustering performance of the DBB algorithm would be enhanced if,
for example, each distributing node was aware that some of its neighbors were already
clustered due to receiving tokens from the local neighborhood and diverted its tokens
towards another unclustered node, even if that required that it waited for a later round of
HELLO message exchanges to complete its budget distribution. The DBB algorithm with
Random Delays can be seen as a modified version of the DBB algorithm aiming to
reduce primarily intra- but also inter- cluster token distribution contentions. The basic
idea is to delay the token forwarding to a neighbor by a random number of rounds (or
HELLO exchanges) to reduce the probability of token distribution contention (notice that
this Random Delay is zero for the DBB algorithm). This way, the neighboring,
distributing nodes will likely be aware of earlier budget distribution effects on the local
neighborhood (which nodes are clustered/not clustered) and thus divert their tokens
towards unclustered local neighbors only. The cost associated with the introduction of
Random Delays in the DBB algorithm is an additional delay in the overall time until the
network decomposition is completed. This additional delay results in “de-synchronizing”
the execution of the potentially synchronized token distribution process at neighboring
nodes and reduces the likelihood for collisions.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 12�

2.2.3 Some Concluding Remarks
Two new, strictly localized algorithms for distributed, directed, budget-based clustering
of large-scale networks are proposed: the Directed Budget-Based (DBB) and the Directed
Budget-Based with Random Delays (DBB-RD) algorithm. The basic, innovative idea is
to utilize clustering status information that can be readily available to reduce or eliminate
token distribution contentions (both intra- and inter- cluster) that severely limit the
effectiveness of earlier budget-based approaches. The algorithms take advantage of the
periodic exchanges of standard HELLO messages between neighbor nodes (apparent in
real-world networks) to update their physical, as well as unclustered topology of their
local neighborhood. They use the updated topology to direct distributing tokens away
from already clustered nodes (both intra- and inter- clustered), thus significantly
improving the overall clustering performance. Furthermore, the algorithms involve only
moderate overhead (a simple 0/1 flag at the end of each HELLO message) to the network.

The proposed algorithms could be useful for organizing ANA nodes in clusters of a
targeted size by considering carefully overhead, decomposition time and divergence from
the target size, when the ANA nodes exhibit characteristics such as those described in
[Tzevelekas06]. In addition to serving self-organization and self-association needs in
ANA, such clustering schemes could be utilized also in the context of service discovery,
as it may become part of some of the service discovery phases (discussed in detail later),
e.g., the service advertising phase that could build a set of ANA nodes that are aware of
the existence of some service. It is not mandatory to be used for self-organization or self-
association in ANA. Rather they are proposals to be considered as possible future
directions when considering the fact that neighborhood discovery may be seen as an
alternative form of service discovery. Here, the role of discovery is undertaken by the
exchanged HELLO messages and the result is the organization of the network in cluster
in an efficient and scalable manner rather than the location of a particular node.

2.3 Address Allocation
Address allocation and routing are intrinsically related. Hierarchical addressing and
routing is essential for large-scale networks to keep the size of routing and forwarding
tables manageable by aggregating multiple forwarding entries that can be represented by
a single entry. The set of aggregated addresses is expressed as their common fixed-size
binary prefix. This introduces certain partitioning requirements: a) address blocks must
be of size power of 2, and b) if any address within a contiguous block requires a separate
forwarding entry, the block has to be split up into multiple smaller parts. An alternative
approach to circumvent this problem is to perform a longest-prefix comparison to
determine the matching forwarding entry. Longest prefix matching, which is used by the
current Internet routing and forwarding mechanisms, trades off computational simplicity
for reduced forwarding table size.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 13�

Address aggregation forms a tree overlaying the overall connectivity graph. If nodes are
permitted to keep their addresses when changing their location in the connectivity graph,
then the overlaying tree is typically not a proper subset of the connectivity graph. This
can happen, for example, if a customer node or network chooses to change network
providers. In the Internet, the logical addressing tree is rooted at a fictitious node with
address 0.0.0.0. Address allocation is handled recursively from the top to bottom of the
tree. Because addresses are globally unique and have a fixed length, there are obvious
fragmentation challenges. Historically, addresses have been allocated and configured
manually and statically and have taken the role of quasi-stable node identifiers for servers
in the Internet. Therefore, dynamic address allocation has been limited to the very edge of
the network using DHCP. Overall, this approach significantly limits the room for
autonomous (i.e. local) decisions about the size and structure of subnetworks.

While this aspect can be somewhat mitigated through larger address spaces, such as
suggested for IPv6, this “solution” does not address the essential fundamental design
constraints associated with inflexible address allocation. Also, a larger address space
poses its own new performance problem. For the current 32-bit IPv4 addresses, fast
lookup technology for high-speed routers can barely keep up with current link speeds.
Performing longest-prefix match lookups for a larger address space will aggravate this
challenge considerably.

When designing a new addressing and address allocation scheme, additional important
design goals need to be taken into account to ensure that a proposal is truly future-proof.
First, communication paradigms such as multi-homing, mobility and multicast break
address aggregation, since in these cases a single stable address cannot have rendezvous
semantics and topological relevance at the same time. This is the classical ID/locator split
problem. Another important goal is path diversity. Currently, network providers typically
run single-path routing protocols and end users have no control over the end-to-end
traffic path. To improve communication quality, robustness, and economic competition, it
has been argued, e.g. in [Yang07], that more control should be given to end users.

Our proposed solution is based on a hierarchy of labels of which only the top level needs
to be globally coordinated. A variable-size list of fixed-size local labels is used as strictly
topology-oriented address. This can be regarded as a simple yet comprehensive solution
for the ID/locator problem. The foremost goal is to be feasible for a future clean-slate
approach to internetworking, regardless of other network protocol functionality. One of
the key requirements is the potential for forwarding performance at line speeds, i.e.
implementation in low-level system components. We design a simple addressing scheme
that delegates as much control as possible to local agreement and requires only minimal
global administrative coordination. It is combined with an agile rendezvous service
operating between DNS and the addressing layer. Both schemes take into account the
economic and/or political realities of an Internet formed by a diverse set of networks.

The addressing scheme can unify many different forwarding paradigms, such as
destination routing, source routing, virtual circuit, or combinations of these. In
cooperation with the rendezvous service, the system can support different communication
paradigms, such as multicast, mobility, etc. The introduction of a separate rendezvous

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 14�

service enables the decoupling and reorganization of functionality that is currently
performed in the IP forwarding plane (e.g. policy-based routing or traffic engineering) or
the DNS naming plane (e.g. load-balancing). This leaves the addressing and forwarding
plane lean, flexible and essentially strategy-free, which should result in enhanced clarity
and hopefully performance.

2.3.1 Related Work

There are many ongoing standardization activities [HIP] and existing technology
standards, such as GRE, MPLS, Mobile IP, etc., that address subsets of this problem
domain. Further, the IRTF routing working group [RRG] has produced a number of
interesting proposals to alleviate global routing concerns related to address aggregation.

Many of the recent proposals for DHT-based lookup services can also be considered as
related work. One particular example is the Internet Indirection Infrastructure (I3)
[Stoica04]. It contains many of the mechanisms proposed in our scheme and covers some
of the same basic ground in the overall problem domain, such as supporting multicast and
mobility. However, it also differs in a number of key properties. First, it is a hybrid
rendezvous and forwarding mechanism, whereas we propose two separate mechanisms.
Further, it is intrinsically tied to the notion of flat DHT-like data structures. For example,
it requires large randomly chosen labels to minimize identifier collisions in the absence of
centralized administration. Ultimately, it is thus inherently limited to being a scenario-
specific overlay network. In contrast, our work is tuned for low-level widespread usage
under realistic assumptions. These assumptions include the support for control and
delegation in a hierarchical rendezvous structure.

Similar proposals for addressing and routing have been given in the NIMROD
[Castineyra96] and NIRA [Yang07] architectures. Both of them provide mechanisms for
client networks to discover the internetwork topology, thus enabling them to compute
routes for packet delivery. In particular, NIMROD uses hierarchical addresses to
represent networks and network elements. It provides a map-distribution mechanism to
inform individual network nodes about the topology of particular regions in the hierarchy.
However, the proposal does not explain how NIMROD can efficiently fit into the current
policy-based routing paradigm. In addition, NIMROD effectively mandates source
routing (potentially combined with virtual circuit forwarding) and does not support
destination-based routing. NIRA, on the other hand, is quite similar to our approach in
terms of basic design aspects, and it is designed for the current customer-provider based
routing policy. In NIRA, each network is assigned a number of addresses. Each address
denotes a path from a top-level provider to the network. A domain level route can be
determined by concatenating a source and a destination address. However, as a source
routing scheme, NIRA requires the source network to specify the entire inter-domain
routing paths, which leaves transit networks with no control over their traffic. Also,

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 15�

NIRA is somewhat incomplete in that route discovery is limited to paths along a strict
customer/provider hierarchy with only limited support for peering routes.

In contrast, our approach attempts to achieve more than previous work by designing an
autonomous address allocation scheme that increases flexibility and allows shared control
over routing choices. At the same time, we attempt to design a more general proposal that
also includes solutions for the general ID/locator split problem.

2.3.2 Proposal
The actual Internet topology is a meshed graph with some hierarchy (often characterized
as a power-law hierarchical graph). In contrast, hierarchical IP addressing establishes a
strict tree relationship between networks and nodes, originating at a virtual root node with
IP address 0.0.0.0. All paths in the network that do not follow the single addressing tree
cause a distortion of the address aggregation scheme. There are several ways in which a
different addressing and rendezvous scheme can alleviate the situation:

• If each node can have multiple addresses representing different possible paths
towards its current location, address aggregation can be maintained at all times.

• By allowing variable-length addresses, the overall network does not have to settle
for an either too small (IPv4) or too big (IPv6) address space. Instead, it is often
possible for core nodes to forward packets based on only a small address prefix,
while any number of nodes in an arbitrary topology can still be supported.
Address space fragmentation can be contained to those areas in the global
network that effectively cause the fragmentation.

• Eliminating the inherent assumption that addresses are permanent identifiers
makes renumbering easier.

• Supporting relative addresses as well as absolute addresses increases flexibility to
accommodate special connectivity scenarios efficiently.

The addressing scheme described here satisfies all the above goals. In addition, it unifies
a variety of addressing approaches for different forwarding paradigms and thereby helps
eliminating or at least clarifying cumbersome middle-box functionality.

An address is a stack of fixed-size integer labels. Top-level transit networks are assigned
a unique label each by a centralized authority, such as IANA. We consider the set of
these networks as the nucleus of the global Internet and denote it as core. The overall
Internet is formed by other networks directly or indirectly interconnecting with this core.
All other addressing is localized and potentially uses dynamic leases rather than
permanent address allocation - ultimately a local decision. Within a network, each host
and subnetwork is assigned a local label. Host and subnetwork labels are drawn from the
same local label space in each network. Typically, a customer network needs to be an
assigned a local label by a provider network that it connects to, but not vice versa. When
networks interconnect, they can also assign each other local labels.

A stack of labels leading from a core network to another network or end system forms an
absolute address for this entity and also directly describes the path from the top-level
network to the network or end system. Multiple paths result in multiple addresses being
available for an entity. On the other hand, the addressing scheme also supports using a
label stack as a relative address beginning at any particular network, if each network
along the path has assigned a local label to the next network.

Figure 4: Addressing scheme example

To illustrate the addressing scheme, consider Figure 4. Networks A, B, C, and D form the
core. Other ISP and customers networks are connected hierarchically to the core and have
peering links with each other. The core networks are shown with capital letters. Other
networks are also shown with a globally unique capital letter for easier referencing. Local
address labels are denoted by lower-case letters. For example, Network S receives two
absolute addresses D.b.a and D.a.b representing the two paths leading from the core to
network. The addressing scheme and corresponding routing mechanisms operate at the
inter-domain level exclusively. By choosing appropriate source and destination addresses,
end systems can thus control the path inter-domain through the network.

2.3.3 Discussion
Some considerations are still preliminary, as we further develop this proposal. However,
several promising observations can be made about the addressing system. The simplest
and probably most common case is given by communication paths that lead from an end
system to the core following customer-provider links and then back “out” to another end
system following provider-customer links. The term “valley-free” route has been coined

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 16�

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 17�

e responses. Thereby, a node

s assume symmetric paths at the

appropriate. Short request/reply
interactions will not incur any path setup overhead at all.

2.3.4 Open Issues

for this scenario [Yang07]. In this case, a multi-homed sender can choose the outbound
part of the end-to-end path by selecting from its outgoing links. A multi-homed receiver
can choose the inbound part of the path for future incoming traffic by using the
appropriate source address in outgoing messages. Each end system is requested to use the
latest received source address as destination address for futur
can control which path future incoming messages will take.

Assuming that individual address labels are rather small (our current working assumption
is 16 bits), it is feasible to eliminate the separate addressing schemes to identify transport
protocols (protocol number) and application instances (port number). Instead, all
addressing needs can be integrated into a single network-layer addressing scheme. This
scheme can easily be augmented by giving forwarders the ability to rewrite source
addresses and keep forwarding state indexed by the rewritten label stack. This essentially
reproduces NAT functionality, but now it is integrated into the architecture as a first-class
citizen. Even further, this functionality can be used to efficiently support mobility, similar
to existing proposals for Mobile NAT [Buddhikot05]. As mentioned before, address
labels are only leased to the networks and nodes. Since nodes can have multiple addresses
at the same time and a correspondent node can be informed about the impeding address
change by using the new address as source address, a make-before-break hand-over
mechanism can be supported without requiring any further specialized control protocol.
In fact, an end system does not even have to be aware of its absolute address, if it only
acts a transport client, i.e. if it is always the initiator of a transport association. A message
can be sent without a source address at all and the absolute source address is gradually
built by intermediate systems. All these scheme
respective routing granularity at which they operate.

The collection of mechanisms proposed here permit the construction of internetworking
communication that seamlessly supports arbitrary combinations of datagram routing and
virtual path service. Traditional virtual circuit protocols suffer from path setup latency
and overhead associated with per-flow state maintenance and cleanup complexity. Since
our proposal does not require a separate signaling protocol, it is possible to piggyback
control onto data messages and avoid a separate path setup latency, similar to XTP
[Strayer92]. The establishment of non-default paths and/or addresses does not require
per-flow state, but per-flow state can be uheysed where

The simple and most common case assumption is that a core networks form a very dense
mesh and only valley-free paths are being used. In reality, the second assumption will not
hold often enough, so that alternative scenarios have to be studied. The goal is to provide
mechanisms for flexible path discovery different policies along paths that include peering
links. Various techniques are possible to discover such paths and mediate between the
potentially diverging interests of various network operators and customer networks. We

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 18�

reliminary results are published as part of the NIRA

roposal is still in its early stages, a number of smaller issues can be expected to
arise once we arrive at a more specific specification and prototype implementation of this

net they do not use a fixed address
pace but can assign arbitrary address sizes to each level in the cluster hierarchy. An

example Netsukuku hierarchy is shown in Figure 5.

will study the trade-offs in this problem domain and in particular, will consider the
business framework and economic incentives of participants.

Although the addressing scheme operates at the inter-domain level, resilience and
recovery need to be studied. Some p
study [Yang07]. We also note that resilience is studied in WP3.3 of the ANA project and
hope to benefit from those findings.

As this p

scheme.

2.4 Intra-Compartment Routing
Intra-compartment routing has to be applied to small networks like a WLAN cloud or a
sensor network but also to very large networks like an IP compartment. For the later
clustering as shown in chapter 2.2 can be used to build manageable topologies. The work
on intra-compartment routing is inspired by the Netsukuku routing and clustering work
proposed in [NETS]. Netsukuku uses clusters to build a distributed system up to the scale
of the current Internet. But in contrast to the Inter
s

Figure 5: Hierarchical clustering of Netsukuku

0.2.1.0.5

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 19�

s exist. The node is part of GGGnode 2.

ace for each level of the hierarchy in the

node as the sender the forwarding process
recursively calculates the border nodes at each level of the hierarchy until the address of

ting protocol. They use QSPN2 as the

on the characteristics of the G*node and the level in the Netsukuku hierarchy.

The figure shows a Netsukuku hierarchy which is structured in 5 levels as it would like if
all possible addresses are taken by a node. The hierarchy is constructed by aggregating a
set of nodes – nine in the example – and grouping them into a so called Gnode. These
Gnodes themselves act as normal nodes and can be aggregated to a GGnode and so on.
The address of a node is composed by concatenating the addresses of all G*nodes in the
hierarchy the node lies within. An example node address is: (0.)2.1.0.5. On the top level
of the hierarchy only one G*node exists which we give the address 0. Therefore, this 0 is
usually omitted. On the forth level 4 GGGnode
On the third level the node is grouped into GGnode 1 and on the first level in Gnode 0.
Within this Gnode the node has the address 5.

A routing protocol distributes topology information to all nodes within a G*node. Every
node has to store the routing information for all nodes in all G*nodes it inherits through
the hierarchy. Assuming an 8 bit address sp
above example leads to 256*5 = 1280 entries in the forwarding table for 85 = 32767
nodes which are addressable in the network.

To forward a packet through the network a node first has to identify the level in the
hierarch where the higher level G*node addresses of the node itself matches the
destination address. On this level the routing protocol provides a path from the node to
the G*node with the same address as the destination on this level. The forwarding process
on this level returns the next hop G*node and a border node – which of course is a
G*node of the next lower level in the hierarchy – which acts as a gateway to this G*node.
If the border node is not in the same G

the next hop within the Gnode is returned.

2.4.1 Routing within a G*node
The authors of Netsukuku propose their own routing protocol called QSPN2 [QSPN] but
Netsukuku itself is independent of the active rou
routing protocol an each level in the hierarchy. In our simulation we used a modified
version of FSR (fisheye state routing) [Iwata99].

Organising a network in a hierarchy as Netsukuku does makes the network easily scale to
a large size but has some requirements to the routing protocol. First, the routing protocol
depends
Second, the routing protocol of an autonomous system must be adaptable to a variety of
metrics.

G*nodes are expected to vary significantly depending on the characteristics of the
physical nodes and the level in the hierarchy. A G*node consisting of wireless nodes only
has different requirements towards the routing algorithm compared to mixed
wired/wireless G*node or an all fixed nodes G*node. The independence of the routing
protocol allows two ways to explore: First, the use of different routing protocols in
different G*nodes. That would require that during the G*node creation the nodes would

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 20�

des

erent nodes in the G*nodes and their missions. The routing

n other information. Using the fisheye analogy FSR distributes

he node is no longer a direct

additional input. Besides building shortest paths to all known destination – the distance in

have to negotiate which routing protocol to use and that mobile nodes must be capable of
executing a range of different routing protocols. The later could be solved by on-demand
downloading of the routing protocol program provided that trust issues and heterogeneity
of end systems can be solved. Second, the same routing protocol is used in all G*no
and can identify the G*node’s characteristics on its own and adapt itself accordingly.
This requires the negotiation and publication of the used metrics within the G*nodes.

Furthermore, the routing protocol must be able to adapt to different metrics. The metrics
used to construct the forwarding graph depend on the application requirements. Currently
most routing protocols use shortest path algorithms to compute the shortest paths to all
possible destinations using hop count as the metric. But other application might regard
path stability higher than end to end delay. Within Task 3.3 “Resilience Framework” a set
of quality of service metrics for resilience are defined. Other quality of service metrics
encompasses performance and security. Again the used metrics within different G*nodes
may vary according to the diff
protocol must be open enough to use the required metric or a combination of metrics to
create the forwarding graph.

We used the fisheye principle introduced in FSR as the foundation of our experiments.
Routing updates are sent to neighbouring nodes periodically containing any new
information the node has obtained since the last update. By defining update scopes and
update intervals some information about the system’s topology is distributed more often
to neighbouring nodes tha
topology information about close by nodes three times as often as topology information
about nodes farer away.

As a first metric we used link stability in a wireless network environment. First results
show the space which can be explored. Since routing updates are sent periodically to all
neighbours – broadcast with TTL 1 – monitoring how high the loss rate of routing
message is easy. Routing updates are sent periodically every five seconds. Not receiving
an update message is recorded as a packet loss and the link stability is decreased. Three
consecutive missed update messages indicate that t
neighbour. We currently investigate which other metrics can be used to calculate the path
stability to other nodes and how they can be measured.

To accomplish the exchange of the measured parameters the message format of FSR had
to be extended in two ways: First, the locally monitored downlink stability of all
neighbouring nodes is included in each update message. This information is included in a
variable length list between the message header and the topology information. The length
of this list depends on the number of neighbours the host has discovered. For now the
complete list is published in each routing update message which introduces an overhead
to every message. In order to reduce this overhead we think about restricting the list to
entries which parameters have changed by a certain threshold. Further investigations have
to show how to balance the savings I overhead and the inaccuracy in the metric
computation. Second, the uplink stability to all neighbours is added to each topology
entry. To calculate the forwarding graph the node can use this stability information as an

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 21�

g – or

nt more often to
neighbouring nodes than the information about nodes below this limit.

2.4.2

alues. Furthermore, scope

f an end-to-end path can improve the metric computation for the path to the

priate in-path functional block which can run in
user or – more likely – in kernel space.

hop count to other nodes is inherently included in the topology information – a node can
calculate the most stable path to all destinations – which might be undesirably lon
the shortest path to all destination with a minimum stability (if such a path exists).

Secondly, we investigated the scope definition. Introducing a second metric into the
routing algorithm for the shortest path calculation enables more choices in the definition
of the routing update scope. Instead of sending changed topology information about
nodes with a routing distance below a defined limit more often than the information for
nodes farer away we used the path stability as the metric. Information about nodes to
which a path exists which exceeds a defined stability limit is se

Open Issues
The next steps include the design of a uniform interface to enable the configuration of the
routing protocol. The node must be able to set which metrics to use for the shortest path
calculation and which relation to use to compare two (sets of) v
definitions and update intervals must be provided by the node.

An other open issue is to explore ways to gather needed information depending on the
used metric. To improve the link stability metric we used in our first experiments we
envision using statistics gathered while forwarding regular traffic. Depending on the
technology of the nodes and challenges experienced in the network link layer statistic can
be used for this. Furthermore, we envision using statistics gathered on the transport level.
The quality o
destination.

Finally, a prototype for the ANA framework will be implemented. It will be a functional
block that runs in the user space part of the MINMEX only as today’s routing protocols
are running in user space. The MINMEX provides an easy and universal interface to
update the forwarding table of the appro

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 22�

3 CONCLUSION

In this deliverable we present fundamental building blocks for autonomic networking
systems. The bootstrapping procedure provides the basis for the ANA architecture. The
node compartment is created where following compartments can publish themselves, un-
publish themselves, lookup other compartments and resolve other compartments. These
functionalities enable self-association and self-organization mechanisms to be build.
Examples of such self-organization mechanisms have been presented next. Our research
on directed budget based clustering has been published in [Tzevelekas06]. It significantly
improves the clustering process by utilizing local information which neighbouring nodes
are not yet part of the cluster. Secondly, a design for a new addressing scheme has been
introduced. It is based on variable length addresses which are temporarily assigned to the
node in contrast to today’s fixed length permanent addresses. Last, an intra-compartment
routing scheme has been presented. It is designed to calculate the forwarding table based
on multiple metrics. A first prototype using the link stability as an additional metric to the
distance metric showed to be promising.

In the upcoming months research in task 2.4 will concentrate on three objectives: First,
design and development of generic self-association and self-organization algorithms to
allow the FBs of a compartment to “bootstrap” communications. Secondly, continue
ongoing work on the proposed “simple addressing scheme” that aims to provide scalable
and efficient support for multi-homing and mobility. And thirdly, explore the design
space for the routing scheme in all its dimensions. For all these activities prototypes will
be implemented which will operate on the ANA MINMEX system. Therefore, the next
deliverable will be software package and an accompanying document.

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 23�

4 REFERENCES

[Buddhikot05] M. Buddhikot, A. Hari, K. Singh, and S. Miller: “MobileNAT: A New
Technique for Mobility Across Heterogeneous Address Spaces”; Mobile
Networks and Applications, 10(3): 289-302 2005.

[Castineyra96] I. Castineyra, N. Chiappa, M. Steenstrup: “The Nimrod Routing
Architecture”; RFC1992, August 1996

[Chan04] H. Chan and A. Perrig: “Ace: An emergent algorithm for highly uniform
cluster formation”; in Proc. of IEEE European Workshop on Wireless
Sensor Networks (EWSN'04). Springer Verlag, January 2004, pp. 154-
171.

[Estrin99] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar: “Next century
challenges: Scalable coordination in sensor networks”; in Proc. of ACM
MobiComm'99, August 1999, pp. 263-270.

[HIP] IETF Working Group: “Host Identity Protocol (hip)”;
http://www.ietf.org/html.charters/hip-charter.html

[Iwata99] A. Iwata, C. Chiang, G. Pei, Mario G. Chen: “Scalable Routing Strategies
for Ad hoc Wireless Networks”; IEEE Journal on Selected Areas in
Communications, Volume 17, No, 8, pp.1369-1379, IEEE, August 1999.

[NETS] The Netsukuku group; “Netskuku topology”;
http://netsukuku.freaknet.org/; Last visited 01/08.

[Krishnan06] R. Krishnan and D. Starobinski: “Efficient clustering algorithms for
selforganizing wireless sensor networks”; Ad Hoc Networks, vol. 4, no. 1,
pp. 36&-59, January 2006.

[QSPN] The Netsukuku group: “Quantum Shortest Path Netsukuku”;
http://netsukuku.freaknet.org/; Last visited 01/08.

[RRG] IRTY Routing Research Group (rrg);
http://www.irtf.org/charter?gtype=rg&group=rrg

[Orecchia04] L. Orecchia, A. Panconesi, C. Petrioli, and A. Vitaletti: “Localized
techniques for broadcasting in wireless sensor networks”; in Proc. of ACM
DIALM-POMC'04, Philadelphia, USA, October 2004.

[Stoica04] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana: “Internet
Indirection Infrastructure”; IEEE/ACM Transactions on Networking,
12(2):205-218, April 2004.

http://www.ietf.org/html.charters/hip-charter.html
http://netsukuku.freaknet.org/
http://netsukuku.freaknet.org/
http://www.irtf.org/charter?gtype=rg&group=rrg

FP6-IST-27489 ANA Project - Deliverable D2.6 –
Self-Association and Self-Organization mechanisms Page 24�

[Strayer92] W. T. Strayer, B. Dempsey, and A. Weaver: “XTP: The Xpress Transfer
Protocol”; Addison Wesley, Reading, MA, 1992.

[Tseng03] Y. C. Tseng, S. Y. Ni, and E. Y. Shih: “Adaptive approaches to relieving
broadcast storms in a wireless multihop mobile ad hoc network”; IEEE
Trans. Comput., vol. 52, no. 5, May 2003.

[Tzevelekas06] L. Tzevelekas and I. Stavrakakis: “Directed Budget-Based Clustering for
Wireless Sensor Networks”, 2nd International Workshop on Localized
Communication and Topology Protocols for Ad-hoc Networks
(LOCAN2006) held in conjunction with IEEE MASS 2006, October 9-12,
2006, Vancouver, Canada.

[Yang07] X. Yang, David Clark, and A. Berger: “NIRA: A New Inter-Domain
Routing Architecture”; IEEE/ACM Transactions on Networking,
15(4):775-788, Dec. 2007.

	1 Introduction
	1.1 Structure of this Document

	2 Algorithms and Mechanisms
	2.1 Bootstrapping and Node Monitoring
	2.2 Clustering
	2.2.1 The Directed Budget-based clustering algorithm
	2.2.2 The Directed Budget-Based Algorithm with Random Delays
	2.2.3 Some Concluding Remarks

	2.3 Address Allocation
	2.3.1 Related Work
	2.3.2 Proposal
	2.3.3 Discussion
	2.3.4 Open Issues

	2.4 Intra-Compartment Routing
	2.4.1 Routing within a G*node
	2.4.2 Open Issues

	3 Conclusion
	4 References

