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Abstract: 

This document constitutes the first version of the ANA Blueprint Architecture. It 
describes the initial reference model of the Autonomic Network Architecture (ANA) 
developed within the EU FP6 IST Project 27489.  

The Blueprint includes a definition of the basic abstractions, core concepts and 
communication paradigms of ANA, defines abstract interfaces that an actual 
implementation of a network node must provide in order to support the ANA 
architectural concepts, and the information flow model for the relevant control and 
management information of an autonomic network. 
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Executive Summary 

The goal of the ANA project is to explore novel ways of designing and building networks 
beyond legacy Internet technology. The ultimate goal is to design and develop a novel 
network architecture that can demonstrate the feasibility and properties of autonomic 
networking [1]. As specified in the description of work [2], it is the intension of the 
project to address the self-* features of autonomic networking such as self-configuration, 
self-optimization, self-monitoring, self-management, self-repair, and self-protection. 

Because autonomic networking is very recent research area and there does not yet exist 
an autonomic network architecture, the ANA project is doing significant spadework on 
this wide and challenging research topic. 

Designing a network architecture implies identifying and specifying the design principles 
of the system being developed. The architecture defines the atomic functions and entities 
that compose the network and specifies the interactions which occur between these 
various building blocks.  

As the first draft of the ANA architectural blueprint specification, this document 
describes the initial reference model of the ANA autonomic network architecture. It 
includes a definition of the basic abstractions and concepts of the ANA architecture and 
the communication paradigms. The document also includes the abstract interfaces that an 
actual implementation of a network node must provide in order to support the ANA 
architectural concepts, and defines the information flow model for the relevant control 
and management information of an autonomic network. 
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1 INTRODUCTION  

This document is the first version of the ANA Blueprint. It consists of deliverables 
D1.4v1 (First ANA Blueprint specifications), D1.5v1 (Autonomic functional blocks), and 
D1.6v1 (Information flow data items and interface specifications) which together specify 
the core operation of ANA. This first version of the Blueprint was produced during the 
first 9 months (M4-M12) of architectural work in 2006 and is the basis for both the 
development of a prototype and the deployment of a testbed in 2007. This upcoming 
prototyping phase will be used to test, validate, and refine the architectural concepts 
presented in this document, and will eventually lead to a second and more mature 
Blueprint document that will be released in the second-half of 2008 (M30). 

This first version of the Blueprint describes the initial reference model of the ANA 
autonomic network architecture. This includes a definition of the basic abstractions and 
concepts of the ANA architecture and the communication paradigms. The Blueprint also 
includes the abstract interfaces that an actual implementation of a network node must 
provide in order to support the ANA architectural concepts. Finally, the Blueprint defines 
the information flow model for the relevant control and management information of an 
autonomic network (e.g., for configuration, monitoring, routing, optimization, resilience) 
and the necessary interfaces. 

1.1 Motivation and Objectives 
This section recaps the main drivers behind the Autonomic Network Architecture (ANA) 
and its high-level objectives. 

The overall objective is to develop a novel network architecture and to populate it with 
the functionality needed to demonstrate the feasibility of autonomic networking. In order 
to avoid the same failings of network architectures developed in the past, the guiding 
principles behind the architectural work in ANA are achieving maximum flexibility and 
providing support for functional scaling by design.  

The former indicates that the project members do not envision a “one-size-fits-all” 
network architecture for the various different types of networking scenarios (e.g., 
Internet, Sensor Networks, Mobile Ad hoc Networks, Peer-to-peer Networks). Instead, 
the aim of ANA is to provide an architectural framework that enables the co-existence 
and interworking between different network architectures.   

Functional scaling means that a network is able to extend both horizontally (more 
functionality) as well as vertically (different ways of integrating abundant functionality). 
New functions must be integrated; otherwise we do not have scaling of functionality, 
only function accumulation. In the context of ANA, the ability of functional scaling is 
considered vital, as this provides the basis to allow dynamic integration of new, 
autonomic functionalities, as they are developed.  
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The Internet and the OSI model are examples of a functionally non-scalable approach: 
both are based on the premise of factoring out functionality. The “canonical set” of 
protocols collected in the Internet-Suite has done a good job so far; however the 
limitations of this one-size-fits-all approach have become visible. This is not surprising, 
since the networking layer of the Internet has not aimed at functional scaling by design: it 
has evolved through a ‘patchwork’ style. Additions were made in a stealth-like way and 
have not dared to change things. The main examples are the introduction of the hidden 
routing hierarchy with AS, CIDR or MPLS, as well as other less successful initiatives 
such as RSVP, multicast, mobile IP and MANET. 

As a result, the objective of the ANA project is to provide an architectural framework – a 
“meta architecture” – that allows the accommodation of and interworking between the 
full range of networks, ranging from small scale Personal Area Networks, through 
(Mobile) Ad hoc Networks and special purpose networks such as Sensor Networks, to 
global scale networks, in particular the Internet.  

An important step towards such a “meta architecture” is to design a framework that is 
able to host different types of network. As a result, ANA encompasses the concept of 
Compartments as a key abstraction that allows co-existence and interworking of different 
types of network through a minimum generic interface. 

Furthermore, the operation of different types of compartments must be analysed in order 
to identify the fundamental building blocks of the abstraction. The de-composition of 
compartments into the core functions helps to understand how the necessary flexibility 
(functional scalability) to provide autonomicity can be achieved through compartments.  

An important concern in developing a new architecture is to ensure that networks have 
the necessary emergent properties to support the applications and users running on them. 
Key amongst these is resilience and security, which we explore in depth in ANA, and 
evolvability which is an implicit part of the project’s concerns. 

1.2 Scope of Deliverable 
The Blueprint documents focus on the overall architectural aspects of ANA. As such, 
they define the basic abstractions and building blocks of ANA and present their basic 
operation and interactions.   

As it is most important to establish a sound architectural framework, the focus of the 
initial work was primarily on the overall architecture. How autonomicity can be achieved 
will be more carefully studied once the architectural framework becomes stable and the 
key building blocks and their basic operations have been identified.  

Therefore, the blueprint does not capture the detailed results of other areas of work in the 
project, such as routing, service discovery, functional composition, monitoring, etc. The 
outcomes of those areas of work are describes in the following deliverables: 

• D2.1: First Draft of Routing Design and Service Discovery [3] 

• D2.2: Functional Composition Framework [4]  
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• D3.1: Monitoring Framework [5] 

• D3.2: Resilience/Security Framework [6] 

1.3 Structure of the document 
The structure of this document is as follows: Section 2 defines the ANA terminology. 
Section 3 describes the core abstractions of the ANA network architecture and the basic 
communication paradigms. Section 4 further outlines how autonomicity is achieved in 
ANA. Section 5 defines the ANA node, its basic components and operation as well as the 
abstract interfaces. Section 6 defines the information flow framework that is the basic 
concepts for information sharing in ANA. Finally, section 7 concludes the document. 
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2 TERMINOLOGY 

2.1  Abbreviations 
ANA Autonomic Network Architecture 

API Application Programming Interface 

BP Bootstrap Protocol 

FB Functional Block 

IC Information Channel 

IDP Information Dispatch Point 

IDT Information Dispatch Table 

MC MINMEX Controller 

2.2  Definitions 
Identifier:  

• An Identifier consists of a finite sequence of symbols of a given alphabet.  
• Identifiers are used for identification of an entity within a set of entities (e.g., to 

single out one or more objects from a set of objects). 
• Identifiers are typically persistent and globally unique within a given identifier 

space. 
• Within ANA, identifiers are used to identify objects, resources, etc. 

Name: 

• A Name is a globally unique, persistent identifier used for recognition of an 
entity (e.g., object, resource, and host). For example, a name can be used to 
resolve the address/locator of the entity. 

• Within ANA, names are used to identify an entity (e.g., object, resource, and 
host). Names can thus be used to resolve the identifier or address/locator of an 
entity, which is necessary to gain access or communicate with the entity. 

Address: 

• An Address is an identifier that is used for routing and forwarding.  
• Addresses entail the information that is needed to transport data/information 

from a source to a destination.  
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• In case of structured addresses, which define the location of an entity within a 
topology, addresses are also called Locators. 

 

Label: 

• A Label is a node-local identifier for an Information Dispatch Point.  

 

Functional Block (FB): 

• A FB is an information processing functions in ANA, which for example 
generates, consumes, processes or forwards information. 

• FBs run on one node only, which means a node has full control over the 
functional blocks it hosts. 

• FBs can have zero or more input and output. 

 

Information Channel (IC): 

• An IC is the abstraction of a communication service that is provided by a 
(underlying) compartment or the underlying system. 

• Conceptually ICs can be seen as the channel/medium over which communication 
between FBs takes place. 

• ICs are provided by a compartment and only exist within compartment bounds. 
• ICs can be logical, i.e. they can span several physical network devices and be 

viewed as distributed objects made of FBs and other, lower level ICs. 
 

Information Dispatch Point (IDP): 

• An IDP is the entities that allow decoupling for ICs and FBs. That is, access to an 
FB or IC is done via the IDP it is bound to. 

• IDPs allow dynamic (re-)binding of FBs and ICs in a way that is transparent to the 
“client” of the FB or IC. That is, the entity bound to an IDP can be changed but 
the IDP used to interface with the entity remains. 

• IDPs perform no processing except data forwarding (actual processing of data is 
performed by FBs). 

 

Compartment: 

• A Compartment is a policed set of FBs, IDPs and ICs, which enables 
communication for its members according to some commonly agreed set of 
communication principles, protocols and policies. 

• A compartment's protocols, policies and communication principles form a sort of 
“recipe” that all compartment entities must obey. 
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• The common recipes are typically the communication principles, protocol(s) and 
policies to be used. 

o Examples of common communication principles: how naming, addressing, 
routing, etc. is handled 

o Examples of protocols: communication protocols between peer FBs on 
different nodes, etc. 

o Examples of common policies: membership (join/leave) procedures trust, 
etc. 

• Compartments are the context in which FBs and ICs exist. This context includes 
related internal management activities. 

• The FBs of a compartment communicate through Information Channels (ICs). ICs 
can be seen as abstractions of “connections” or “communication channels” 
through underlying compartments. In case there are no underlying compartments, 
ICs represent the underlying communication channels (outside the ANA world) 
that are used for transferring information between FBs (e.g., an inter-process 
communication channel, a L2 channel). 

• Some compartments may require a minimal set of (composed) FBs in each and 
every participating ANA node. This is considered again as part of the 
compartment policies. Those composed FBs are closely related FBs 
interconnected through IDPs. 
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3  BASIC ABSTRACTIONS AND PARADIGMS 

This section introduces the basic abstractions of ANA, namely the compartment concept, 
the network compartment and the node compartment. 

3.1  Compartments 

3.1.1  Background and Motivation  
Recent research has led to the conclusion that today’s networks have to deal with a 
growing diversity of commercial, social and governmental interests that have led to 
increasingly conflicting requirements among the competing stakeholders. Clark et al. 
refer to this development as “tussles in cyberspace” [7]. A pragmatic way to resolve those 
tussles is to divide the network into different realms [9] or turfs [8] that isolate the 
conflicting or competing interests. In the context of ANA, the term compartment is used, 
which likewise captures the concepts of virtual networks and sub-networks.  

The compartment abstraction, as one of fundamental concepts of ANA, allows 
atomization or decomposition of communication systems and networks into smaller and 
more easily manageable units. For example, compartments will allow decomposition of 
today’s global IP network into appropriate sub-networks, which can be managed more 
autonomously from the overall network (e.g., a different addressing or routing scheme 
can be applied inside each compartment). Atomization or decomposition also helps 
reducing complexity by abstracting compartment internals to the outside world and 
hiding complexity of communication beyond the compartment from the individual 
communication elements.  

In addition to the ability to separate concerns through atomization or decomposition, the 
compartment abstraction serves as the unit for the federation of compartments into 
global-scale communication systems and networks. For example, compartments allow 
interworking across heterogeneous network domains (e.g., nodes that are located in 
compartments that use different technologies can interwork through a common overlay 
compartment).  

The fact that the compartment abstraction allows federation or composition of 
heterogeneous compartments also enables ANA to “encapsulate” today’s networks; i.e. 
compartments offer a kind of “wrapper mechanism” that allows accommodation of 
legacy network technologies within ANA. Since support for backwards compatibility and 
interworking with already deployed networks is a key requirement for any new network 
architecture, some architectural compromises are typically made to achieve this. 
However, as the compartment abstraction allows hiding the internals of individual 
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network domains and enables interworking among heterogeneous compartments, ANA 
enables full integration of existing network technologies or domains in the ANA world.  

3.1.2  Compartment Definition  
Compartments implement the operational rules and administrative policies for a given 
communication context. The boundaries of a communication context, and hence the 
compartment boundaries, are based on technological and/or administrative boundaries. 
For example, compartment boundaries can be defined by a certain type of network 
technology (e.g., a specific wireless access network) or based on a particular protocol 
and/or addressing space (e.g., an IPv4 or and IPv6 network), but also based on a policy 
domain (e.g., a national health network that requires a highly secure boundary).  

ANA anticipates that many compartments co-exist and that compartments are able to 
interwork on various levels. In a sense, compartment provide a “recipe” that specifies 
how the compartment operates; e.g., it defines how to join a compartment, who can join, 
and how the naming, addressing and routing is handled.  

The complexity and details of the internal operation is left to each compartment. For 
example, registration with a compartment can range from complex trust-based 
mechanisms to simple registration schemes with a central database or a public DHT-
based system; resolution of a communication peer can be handled implicitly by the 
compartment’s naming and addressing scheme or require explicit actions (e.g., resolution 
of an identifier to a locator). It is important to note here that compartments have full 
autonomy on how to handle the compartment’s internal communication – i.e. there are no 
global invariants that have to be implemented by all compartments or all communication 
elements.  

A compartment is defined by the set of members which are able and willing to 
communicate among each other according to compartment’s operational and policy rules. 
Conceptually, a compartment maintains some form of implicit database which contains 
its members, that is, each entry in the database defines a member. Before one can send a 
data packet to a compartment member, a resolution step is required which returns a 
means to “address” the member. Note that the above definition does not specify whether 
a member is a node, a set of servers or a software module. This rather abstract definition 
of compartment membership permits to capture many different flavours of members and 
communication forms.  

A second core building block of ANA is the functional block (FB). FBs are code 
instances and state that can process (send, receive, forward, etc.) information. Typically, 
the communicating entities of a compartment are represented in the ANA architecture 
through FBs. They implement the functionality that is required to interact with the 
compartment and communicate within the compartment. As such, the FBs can also be 
regarded as the processing elements or functions hosted by an ANA node that constitute 
the “compartment stack”. FBs can also be composed of a set of two or more FBs that are 
hosted on an ANA node. Further information on how composition of FBs is achieved on 
ANA nodes is provided in Deliverable D2.2 [4].  
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The fact that a FB can represent the whole range from an individual processing function 
(as an atomic FB) to a whole compartment stack or even a network node (as a composed 
FB), makes this abstraction very useful. It permits to capture many different flavours of 
communication entities and compartment types (for example, compartments of simple 
software modules or compartments of client hosts and servers).  

Communication inside a compartment is mediated via Information Channels (ICs). ICs 
can be either of physical or logical nature. Examples of physical ICs are a cable, a radio 
medium, or memory. A logical (or virtual) IC can represent a chain of packet processing 
elements and further ICs. The IC abstraction captures various types of communication 
channels, ranging from point-to-point links or connections, over multicast or broadcast 
trees to special types of channels such as anycast or concast trees. Figure 3-1 illustrates a 
number of different types of ICs. Note that broadcast is considered a special case of 
multicast here. 

unicast multicast anycast concastunicast multicast anycast concast  

Figure 3-1. Different Types of Information Channels (ICs)  

In order to connect flexibly to FBs and ICs, the ANA framework introduces Information 
Dispatch Points (IDPs). IDPs are bound to FBs or ICs, and hence provide a decoupled 
“entry point” (handle) to the FB or IC. This decoupling allows dynamic (re-)binding of an 
ANA entity (i.e. a FB or a IC) in a way that is transparent to the entities that 
communicate with the FB or IC. For example, a FB A that sends information to another 
FB X does not connect to or addresses the FB directly, but rather the IDP that is bound to 
the FB. This way, FB A does not need to be informed if FB X is replaced by another 
functional block, as this can simply be achieved through re-binding the IDP with the new 
functional block. This useful decoupling prevents network entities to be involved in and 
be aware of any (autonomic) re-binding procedure that can take place during active 
communications. Figure 3-2 illustrates in form of a few examples how bindings based on 
IDPs are used. 

XA

A

FB A sends information to the entity bound to 
IDP b (i.e. FB X)

b

IC Y IC Zb IC Y is terminated at IDP b. Arriving information 
are forwarded on the IC bound to IDP b (i.e. IC Z)

c bIC Y FB A that wants to send information to the FB 
bound to IDP b (i.e. FB X) sends the 
information via the IC bound to IDP c (i.e. IC Y) 

X

 

Figure 3-2. Connecting FBs and ICs through Information Dispatch Points (IDPs) 
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Since IDPs also provide functionality that is related to information processing, it could be 
argued that IDPs are just a special type of FBs. Nevertheless, as the ability to 
transparently (re-)bind ANA elements is architecturally important, IDPs are considered 
one of the core abstractions of ANA. In contrast to FBs, IDPs are however limited to 
perform only data forwarding operations (based on the bindings).  

The following example (Figure 3-3) shows how FBs, IDPs and ICs interact in order to 
enable communication within a compartment. The FBs in this example perform some 
type of processing (e.g., add protocol header, perform rate control, etc.) on the data 
before it is transmitted to an entity in another ANA Node via an IC. The bottom IC in this 
example represents the service that is provided by the underlying system (e.g., the 
operating system providing a link and physical layer functionality). Since this IC is not 
provided by the network compartment considered in this example, it is shown in the 
imported view of the compartment. As discussed later in section 3.3.2, the IC can also 
represent the service provided by another, underlying compartment. In addition, the top 
IC shows the “communication service” created by the network compartment as it would 
appear to an external entity using it. Typically, the ICs exported by a compartment can be 
imported by other compartments. Finally, the structural view of the figure shows the 
internal processing elements (i.e. FBs) that execute the protocols and functions that form 
the “compartment stack”. Note that for simplicity the figure shows a single FB but in 
practice there could be multiple interconnected FBs. 

      

"ANA World"

“Underlying System"
Send to medium

(Ethernet, Wifi, etc.)
Listen to medium

(Ethernet, Wifi, etc.)

ANA Node ANA Node

data in

data out

Exported
View

Structural
View

Compartment

This shows that there is really just one IDP "mapped" in the different views. 

Imported
View

IC abstracts service 
provided by 

underlying system

 

Figure 3-3. Different Views of a Compartment: Imported View, Structural View and 
Exported View  

Figure 3-4 shows the conceptual or external view of how a client of a compartment sees 
the service that is provided by the compartment. The service provided can be abstracted 
by a logical IC: An external entity using a compartment can simply view the 
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compartment as an IDP (i.e. the entry point to the compartment) and an IC (i.e. the 
service that is provided by the compartment).  

data

ANA Node

Underlying System 
(e.g. link layer, physical layer)

Client

dataClient

Compartment

Information Channel
(abstraction of the service 

provided by the underlying 
system)

(conceptual view of the 
service that is provided 

by the compartment)

External View

 

Figure 3-4. External View of the Service a Compartment from a Client’s Perspective 

As a result of the way FBs, ICs and IDPs are put together to form a compartment, 
compartments can also be defined by a policed set of FBs, ICs and IDPs that constitute 
the compartment. The policies that control the ANA elements that belong to a 
compartment are part of the compartment definition.  

Node B

Node A

Node A

Node BNode C

Node B

Node A

Node A

Node BNode C
 

Figure 3-5. The Compartment: A policed set of Functional Blocks (red), Information 
Channels (green), and Information Dispatch Points (black) 
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Figure 3-5 illustrates how compartments are formed by a set of communication elements 
(FBs), the communication media between the communication elements (ICs), and the 
dynamic binding elements (IDPs). The figure also shows how an IC can actually abstract 
(or hide) the service provided by another compartment. 

 

3.1.3  Basic Compartment Functions  

Registration and Deregistration:  
Compartments require some type of registration or join function that allows 
communication elements to become a member of the compartment. A corresponding 
function is needed for a member to deregister or leave a compartment. A compartment’s 
registration and deregistration functions depend on the actual purpose of the 
compartment. For example, compartments that only allow certain members to join need 
to undergo some authentication function. Others that are completely open but provide a 
policy or trust domain need to verify that the (composed) FB that implements the 
compartment functionality conforms to the compartment. While compartment registration 
is in most cases expected to be explicit, there are also legacy compartments whereby the 
registration is implicit, e.g., when entities are statically or “by default” part of a 
compartment.  

Policy Enforcement:  
Compartments police their members and resources - i.e. the set of communication 
elements (FBs), communications media (ICs) and binding elements (IDPs) that constitute 
the compartment. For example, the compartment can ensure, e.g., through authentication 
of the FBs, that only trusted FBs that conform to the compartment stack can be 
instantiated.  

 
Identifier Management:  
Compartments that use some kind of identifiers (i.e. names, addresses, etc.) for “naming 
or addressing” of individual or groups of members need to manage the identifier space. 
Compartments will typically associate a (pseudo) unique, compartment-local identifier to 
individual or groups of communication elements (FBs) during the registration phase. 
What kind of identifiers are used and how the compartment manages those identifiers 
depends entirely on the type of compartment. For example, a link-layer compartment 
could use MAC addresses as identifiers of individual members, whereas a compartment 
that encompasses a legacy IPv4 network could simple re-use the IPv4 addresses allocated 
to the node.  
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Identifier Resolution:  
For compartments that use identifiers for “naming or addressing” of individual or groups 
of members, the compartment will also provide the necessary resolution functions for 
members to lookup an identifier and obtain the necessary information how to 
communicate with or address the respective member(s). The result of the resolution 
process depends again on the type of compartment and how communication within the 
compartment is handled. The resolution process may simply result in another identifier 
(e.g., address) that is required for communication at a lower layer, or return any other 
hints that are required to send or forward information towards the destination within the 
compartment (e.g., the next IC to be used or the next hop address).  

Figure 3-6 illustrates an example of the internal resolution process: a compartment 
member requests the resolution of a peer member “A”. The compartment’s resolution 
mechanism provides the necessary information to establish a communication with the 
peer member “A”. It returns for example an IDP labelled ‘a’ that stands for a 
communication channel towards member A. How the resolution is performed is specific 
to each compartment. Note that the resolution process may even be implicit, for example 
as it is currently the case in the Internet, where an IP address “defines” a member that is 
reachable, in principle. 

A=…

resolve
Request(“A”)

A=…

Resolution process
returns communication 
entry point a

A

a

How resolution is 
performed is specific to 
each compartment.

Compartment Compartment  

Figure 3-6. Example of an internal resolution of a compartment member 

Routing:  
Compartments typically also include a routing function that is responsible to select the 
communication paths between any information source and destinations within the 
compartment. The outcome of the path selection process (i.e. the routing information) is 
used by the identifier resolution function to derive the necessary forwarding information 
upon a resolution request. Further details on the ANA routing framework are provided in 
Deliverable D2.1 [3].  

The remainder of this section describes two particular types of ANA compartment, 
namely the Node Compartment in section 3.2 and the Network Compartment in section 
3.3, in further detail.  
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3.2  Node Compartment 
The Node compartment is present in every ANA node: it is the primary hub via which all 
interactions with ANA elements and compartments are initiated. It interacts with the core 
ANA software and has access to network interface cards (NICs) either via the core ANA 
software or via the operating system running on the physical device. “Communication” 
with the node compartment is similar to communications with any compartment, i.e. it 
relies on the same basic mechanisms (control protocol, APIs). In a sense, the node 
compartment is like a “microscopic” network compartment involving just one physical 
device. Like any network compartment, the node compartment has explicit members and 
it is governed by policies (e.g., access and control rights). 

3.2.1 Private views inside the node compartment 
For each “client” of the ANA architecture, i.e. protocols and applications using ANA, the 
node compartment offers a dedicated communication workspace and a private view 
(representation) of the ANA node. Each view may be governed by its own policies, 
access rules, and may have strict or loose boundaries with other views. For example, a 
view may include shared elements provided by other applications or protocols.  

 
client1 client2 client3

Node Compartment

Dedicated view for
each client

Hardware, NICs, ANA-Software
 

Figure 3-7. Private views of the node compartment. 

The particularity of node compartments is that any functional block (FB) or information 
dispatch point (IDP) belongs to one and only one node compartment, although IDPs can 
be “mapped” into one or multiple network compartments. In contrast, an information 
channel (IC) may start and end in multiple node compartments, but a given information 
channel always “traverses” one and only one network compartment. Note that this 
implies that a node compartment has full control over the FBs and IDPs it hosts, but it 
does not have full control over ICs (which are a kind of “shared object”).  
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3.2.2 The node compartment and control channel 

The communication with a node compartment is done via a control channel and a control 
protocol. The control channel is platform/implementation specific and may be realized 
via e.g., UNIX pipes or sockets. To mask implementation details, a set of APIs provide a 
generic interface to connect to the node compartment. Communication with the node 
compartment is achieved via a control protocol which defines a set of APIs to access not 
only the node compartment but also any network compartment. The control protocol is 
used by an ANA client to e.g., access its private view, discover available network 
compartments, setup communication with compartments members and instantiate FBs to 
perform dedicated packet processing tasks. Note that section 5.4 of this document gives 
more details about both the control channel and protocol.  

clientcontrol channel
(platform specific
e.g. pipe, socket)

control protocol

Application dedicated view
of the node compartment

 

Figure 3-8. A client and its node compartment (private view of). 

In the remainder of this section, we will assume that an application can send simple 
requests to compartments, although the syntax may slightly differ from the detailed (and 
more exact) description provided in section 5.4. Note that the outcome of a request (e.g., 
of a function call) is typically the instantiation/deletion of IDPs and FBs in the node 
compartment handling the request, and may trigger the creation/deletion of ICs across 
network compartments.  

Communication with a network compartment is typically handled via a dynamically 
instantiated access object which will be running inside the node compartment or in a 
dedicated framework of the ANA node (i.e. the “playground”) or in the core ANA 
software itself. In the following example, we assume that there exist such access objects 
although we do not provide further insight on how and where these objects are exactly 
implemented. The current focus of this section is indeed to provide a basic understanding 
of the operation of the node compartment, and illustrate by means of an example how a 
basic communication setup is performed.  

3.2.3 Example of Communication setup 
Upon start-up, each client of ANA has access to a private view of the node compartment 
as shown on the following figure. Communication with the node compartment is done via 
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an access object to the node compartment: it handles all (control) requests sent by the 
client to the node compartment abstraction. In Figure 3-9, the access objects of the node 
compartments can be reached via IDP p for client1 and IDP v for client2. 

client1 client2

p

Access object (FB) to private 
view of node compartment

This indicates that FB
is the control-FB for the
compartment

v

ANA client has a control channel
to the node compartment.

 

Figure 3-9. Access object (FB) to the node compartment. 

Each ANA client has now access (via the node compartment access object) to the 
membership database of the node compartment. In particular, this database stores the 
information of available network compartments that clients can request access to. This 
database also stores information about functionalities potentially advertised and provided 
by other clients, and information about functional blocks (other than access objects to 
network compartments) that are provided by the ANA software, e.g., for packet 
encryption, data compression, transmission rate control, etc.  

 
client1 client2

Client has now access to the membership
database of the node compartment which 
contains the list of available 
network compartments.

p v

 

Figure 3-10. The internal database of the node compartment. 

Assuming that the two ANA clients want to establish communication via the local 
Ethernet link, both ANA clients now request access (via the node compartment’s access 
objects) to an access object for the Ethernet compartment. These requests respectively 
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return IDP e for client1 and IDP f for client2 respectively. At that point, both clients can 
communicate with the Ethernet compartment.  

 
client1 client2

Ethernet Compartment

e

Access objects (FB) 
to Ethernet 
compartment f

p v

 

Figure 3-11. The access objects to the Ethernet compartment. 

Note that the access object is the main interface to all the FBs that compose the “stack” 
for a network compartment. That is, communication setup, resolution, etc inside a 
compartment is handled by these FBs. The following figures show this “stack” as a 
separate FB, but in practice there could be a single FB for both the stack and the access 
object. 

Routing

Naming
Addressing

AN access object is the interface with all
the FBs that implement the network operation 
of the compartment.

client1 client2
Ethernet Compartment

e f
p v

Access objects (FB) 
to Ethernet 
compartment

 

Figure 3-12. Stack abstraction. 



FP6-IST-27489 ANA Project - Deliverable D1.4/5/6v1 – ANA Blueprint – First Version Page 18 

When ANA client2 requests (via the Ethernet compartment access object bound to IDP f) 
to explicitly become reachable in the Ethernet compartment, it registers itself in the 
Ethernet compartment with some identifier “B”. A functional block (stack or part of it) 
that will handle incoming data is instantiated and an output IDP b is created. Note that 
there is only one IDP b: it appears in the node compartment and in the structural view of 
the Ethernet compartment, and is “mapped” in the export view of the Ethernet 
compartment. 

client1 client2

In the export view, this IDP 
indicates that node 2 is reachable
via some identifier (e.g. B).

In the compartment database
there is now a member B.

B = …

"stack" FB b

e f
p v

b

 

Figure 3-13. Explicit reachability inside Ethernet compartment. 

When ANA client1 wants to communicate with the Ethernet compartment member that is 
identified as “B”, it requests (via the Ethernet compartment access object bound to IDP e) 
to resolve the identifier “B”. Assuming the Ethernet compartment successfully performs 
this resolution, an IDP a is created and this value is returned to the client. Data can now 
be sent by client1 via the IDP a. Note that IDP a is bound to another “stack” FB which 
will handle incoming data and perform appropriate processing to send this data to the 
destination.  

At this point, the export view contains an IC, which abstracts the internal details of the 
communication: for a user of IDP a, the service provided by the compartment is an 
information channel to member B.  
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ba

client1 client2
B = …

"stack" FBs

v
e

p

For a link-layer compartment,
this IC abstracts the physical link.

i

i

ba

s

s

f

 

Figure 3-14. Member resolution and path setup. 

It is important to note that in this example, the two “stack FBs” are actually connected by 
the physical medium (e.g., an Ethernet switch and twisted-pair cables). This low-level 
connectivity is shown in the import view of the Ethernet compartment by the IC linking 
IDPs s and i. In practice, the low-level functionality (send and receive to/from medium) 
bound to these two IDPs is provided by the abstraction layer of the ANA node as 
described in section 5 of this document. Observe that the two ICs shown in this figure are 
different: the IC {s;i} abstracts a physical link with no ANA functionality while IC {a;b} 
abstracts an active ANA communication with some processing performed by the two 
“stack FBs”.  

Finally, the picture below shows the export view of this communication in the Ethernet 
compartment. This shows that for client1 there is really only an information channel to 
client2: the internal details of what this IC really is are “hidden” by IDP a.  

client1 client2

a b

Exported view of
the compartment

 

Figure 3-15. Export view of Ethernet compartment. 



FP6-IST-27489 ANA Project - Deliverable D1.4/5/6v1 – ANA Blueprint – First Version Page 20 

3.3  Network Compartments 
A Network Compartment is a compartment that encompasses several ANA nodes and 
involves communication across an underlying network infrastructure.  

Like for any compartment, network compartments also consist of a policed set of FBs, 
ICs, and IDPs. In case of a network compartment, the FBs providing the compartment’s 
communication stack are typically located on different ANA nodes. Note that ANA does 
not distinguish between end systems and intermediate nodes – a network compartment 
includes both types of nodes. ICs provide the communication channel between the 
networked ANA nodes hosting the FBs. For network compartments, ICs typically 
represent the underlying communication channels (e.g., an Ethernet link or a wireless 
channel) over which communication between the ANA nodes takes place, or the 
abstractions of the service that is provided by an underlying compartment.  

Examples of a network compartment are:  

• A corporate network – whereby the hosts (i.e. PC and servers) and network nodes 
(i.e. routers) owned by the corporation host the FBs that provide the 
communication stack that is used within the corporate network compartment, and 
the network links (e.g., layer 2 links or VPNs) represent the ICs; the corporate 
network compartment also defines its own (private) addressing domain and 
defines the policy/trust domain. 

• A wireless sensor network - whereby the sensor nodes host the FBs that provide 
the communication stack used within the sensor network compartment, and the 
wireless channels between the sensors represent the ICs.  

• An overlay network – whereby the overlay nodes host the FB that provide the 
communication stack for the overlay, and the virtual links established between the 
overlay nodes represent the ICs.  

3.3.1  Compartments and Layers 
Network compartments can operate at various layers of the OSI model. That is, 
communication among compartment members can take place, for example, at the link 
layer, the network layer and/or the transport layer. A compartment can also combine the 
functionality of several layers (e.g., link layer and network layer) in one compartment.  
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Compartments 
can “operate”
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Compartments can be limited to a single layer 
(red) or implement several layers (blue). 
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Compartments 
can “operate”
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layers
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L1

L4
L3

L2
L1

L4
L3

L7 L7

… …

Compartments can be limited to a single layer 
(red) or implement several layers (blue). 

 

Figure 3-16. Relation between Compartments and OSI Layers 

Compartments that operate at different layers or different scopes (e.g., local vs. global), 
can be “layered” on top of one another. For example, a compartment that offers end-to-
end communication services across heterogeneous network domains can be “overlaid” on 
top of the compartments providing the functionality in each of the underlying network 
domains. 

Unlike layers in the OSI model which rely on strict layering of layer X on top of layer X-
1, compartments can be combined in much more flexible ways. As illustrated above, 
compartments can include semantics and functions of more than one layer (indicated by 
the blue rectangle), or it can provide only the functionality of a single layer (indicated by 
the red rectangle) or even just some aspects of a conventional OSI layer (e.g., just a 
control plane or management plane function). As such, compartments have much more 
“fluid” semantics (depending on the mission and the number of planes they span) and are 
less opaque than layers are in the OSI model. It is even possible that a single 
compartment implements a whole communication stack.  

Another difference between layers and compartment is that compartments do not 
necessarily operate end-to-end, while OSI layers above layer 2 are all end-to-end. In other 
words, compartments can not only interface with other compartments in a vertical 
manner, but also in a horizontal way in order to provide end-to-end communication. For 
example, a compartment can be composed of different types of network layers (e.g., an 
IPv4 and an IPv6 compartment). 

Finally, compartments also extend the OSI layer model by supporting administrative 
policies, which enable flexible and fine-grained control of the operation of compartments 
and the entities that can participate, whereas layers implicitly involve all the entities that 
implement the (static) functionality provided by the layer. 

3.3.2  Layering Compartments 
The ability of layering compartments on top of one another depends on functionality (i.e.  
semantics) the upper compartment expects from an “underlay” compartment and the 
lower compartment can offer to an “overlay” compartment. 
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In order to support layering of compartment X over compartment Y, one requires either 
that compartment X supports the particular compartment interface of compartment Y, 
which then simply “encapsulates” the data and opaquely passes them through the 
underlay compartment, or that an appropriate “interworking function” exists between 
compartment X and Y (e.g., an appropriate FB) that can translate between different 
protocols and/or addressing schemes, or proxy communications of compartment members 
in the other compartment.  

Figure 3-17 illustrates the case where the overlay compartment (Compartment N) directly 
supports the syntax and semantics of the compartment interface exposed by the underlay 
compartment (Compartment L1). This implies that the output interface of the “source 
FB” on the overlay compartment (left top corner) is compatible with the input interface 
expected by the FB of the underlay compartment (left bottom corner) and vice versa for 
the receiving in the intermediate node. 

Compartment N

Compartment L1

  

Figure 3-17. Layering compartments in case the overlay compartment support the interface 
of the underlay compartment. 

Note that in Figure 3-17 it is assumed that for the communication between the 
intermediate node and the destination node, Compartment N is directly interfacing with 
the underlying system – i.e. no underlay compartment is involved. 

Figure 3-18 presents the case where appropriate “interworking functions” are included in 
between the overlay and underlay compartment. The Interworking Functional Blocks 
(IFBs) are FBs that are conceptually part of both compartments. They must support the 
functionality required for communication in both compartments and be able to perform 
the necessary protocol and/or identifier translations.  
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Compartment N

Compartment L1

Inter-
working

Functional
Block 
(IFB)

 

Figure 3-18. The Interworking Functional Blocks (IFBs) enables “translate” between the 
syntactical and semantical differences of the overlay and underlay compartments 

The latter approach (with the interworking functions) is advantageous in case a particular 
compartment can serve as the overlay compartment for many heterogeneous underlay 
compartments. In this case, the different IFBs can be used to “translate” between the 
overlay compartment and the various underlay compartments. Hence in that scenario, 
there is no need that all compartments must support exactly the same interface. The IFBs 
can hide the syntactical and semantical differences of the interface supported by the 
overlay compartment and the interface exposed by the underlay compartment. 

Further details on how inter-compartment communication is handled are provided in 
section 3.4.2.  

3.4 Communication Paradigms  

3.4.1 Intra-Compartment Communication  
One common characteristic of ANA compartments is that all members agree on some 
common set of operational and policy rules. This “recipe” includes the communication 
principles, protocol(s) and policies to be used for intra-compartment communication. It 
defines for example:  

• How communication elements are identified (i.e. naming and addressing). 

• How identifiers are resolved (i.e. name lookup or address resolution). 

• How to route information inside the compartment (i.e. routing). 

• How to send/forward information (i.e. forwarding). 
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• What protocol to be used to communicate between peer elements. 

 

Figure 3-19 illustrates a scenario where a set of ANA nodes (indicated in yellow) form a 
network compartment in order to communicate with each other. All nodes that want to be 
part of the compartment must provide the compartment stack (indicated by the blue 
boxes) - i.e. every node has to support the necessary functionality (i.e. functional block) 
to join the compartment and communicate according to the compartment’s 
communication scheme. Nodes that provide the required functionality are able to operate 
according to the compartment rules, and hence can participate in the compartment 
(indicated by the blue circle).   

The compartment defines the intra-
compartment communication scheme 
– i.e. how naming/addressing is 
done, how packets are routed, what 
protocols are used, etc.

ANA Node

“Compartment 
Stack” –
a (composed) 
Functional Block

Only nodes that support the 
compartment stack can 
become part of a compartment

 

Figure 3-19. Intra-Compartment Communication 

How communication inside the compartment is handled is entirely up to the 
compartment. Depending on the type and purpose of the compartment, different 
communication schemes can be applied. For example, a compartment that intends to 
provide the communication context for a Wireless Sensor Network, where the main goal 
is to aggregate sensor information on low-power devices, can implement a completely 
different communication scheme (i.e. addressing, routing, etc.) and protocol than a 
compartment that targets end-to-end communication among user terminals, such as for 
voice communication. While the former can use a very simple addressing and routing 
scheme that is able to aggregate the sensor information, the latter requires a naming or 
addressing scheme that supports end-to-end communication and a routing scheme that 
minimises end-to-end delay and jitter.  

Since compartments have full autonomy on how to handle intra-compartment 
communication, there are no global invariants that have to be implemented by all 
compartments or all communication elements.  
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3.4.1.1  Compartment Multi-homing  
ANA nodes can participate in multiple compartments. A node simply needs to support 
the necessary compartment functionality (i.e. the compartment stack) and join each of the 
compartments.  

Figure 3-20 illustrates an ANA node that is multi-homed (i.e. part of several 
compartments at the same time). This enables the node to communicate with members of 
both compartments.  

ANA Nodes can participate in 
many compartments – they 
just need to support the 
(different) compartment stacks

 

Figure 3-20. Multi-homing in several Network Compartments  

It should be noted however that the fact that one node is multi-homed does not 
necessarily permit any of the other nodes to communicate through this node with ANA 
nodes in other compartments. In order to enable inter-compartment communication 
between ANA nodes of different compartments, special interworking functionality must 
be provided that allows translation or proxying of communications between the different 
compartments.  

Further details on how inter-compartment communication is handled within ANA are 
provided in the following section. 

3.4.2 Inter-Compartment Communication  
The issue of inter-compartment communication in ANA is discussed in this section. An 
analysis of various inter-compartment communication scenarios is followed by a set of 
principles or recommendations on how to best handle inter-compartment communication 
in ANA.  

3.4.2.1 Analysis of Inter-Compartment Communication 
Scenarios 

This section analyses different inter-compartment communication scenarios, whereby 
communication entities of adjacent compartments want to communicate with each other. 
The issues, difficulties and limitations of direct communication between peers across 
compartment boundaries are highlighted. 
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Note that in this section an identifier is simply considered some sort of a “attribute” that 
identifies a communication element (e.g., a FB, a network node, etc.) with regard to some 
semantics. Example semantics involve:  

• host/interface location (e.g., an address as in IP) 
• host entity (e.g., a node/host id as in HIP) 
• host role (e.g., a service identifier as in port numbers) 
• host property (e.g., OS platform, performance capability) 
• combined identifiers (e.g., network location and host role) 

Case 1: Without a common identifier space or overlay compartment 
The following figure shows a scenario whereby two communication elements of adjacent 
compartments want to communicate with each other. In this case, it is assumed that the 
two compartments operate completely independently (for example, one compartment 
based on IPv4 and the other based on IPv6).  

 
Communication entities that are 
member of several compartments 
can act as “Gateways” between 
the different compartments

A
B

C 1
2

3

The Interworking Functional Block (IFB) 
“translates” between the different 
communication schemes and identifier 
spaces of the involved compartments  

Figure 3-21. Inter-compartment communication scenario without a common identifier 
space or overlay compartment 

Since the two compartments are completely independent, it must be assumed that there is 
no well-known mapping between the different communication syntax and semantics 
known to the communication elements of the different compartments. Only the gateway 
entity, which is part of both compartments, is able to communicate in both compartments. 

This case further assumes that there exists no other, higher-level common identifier space 
(e.g., DNS) or common overlay compartment (e.g., a common transport protocol) that 
offers the peer entities of the different compartments a common syntax and semantics for 
the communication. 
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The following examples illustrate through real-life networking scenarios cases where 
such type of direct communication between peers of adjacent compartments occur. 

Example 1:  
For example 1, the left (blue) and the right (green) network compartments illustrated in 
Figure 3-21 are envisioned to be of the same type (i.e. both use the same protocol suites) 
and they only use different identifier spaces (e.g., addresses or ports). Then, the gateway 
entity “C/1” only needs to do identifier translation. The required translation functionality 
is limited to the protocol layer within which the identifiers need to be translated. In the 
most typical case that will be the network layer, which makes the gateway entity “C/1” a 
NAT box, but in theory, this translation could also occur at any other layer (e.g., the link 
layer) or a combination of layers (e.g.,  network plus transport layer).  

Example 2:  
For example 2, the left (blue) and the right (green) network compartments illustrated in 
Figure 3-21 are envisioned to be of similar type, but not the same. For example, both 
compartments have similar protocol suites in terms of numbers of layers and/or 
functionality, or provide a similar “service” to the clients. Still, translation from one 
protocol suite to the other (e.g., TCP/IPv4/TokenRing and TCP/IPv6/Ethernet) is doable. 
However, in this case the gateway entity “C/1” must provide more complex translation 
functionality than simple identifier translation. It must also be able to perform protocol 
translations at one or more layers. A typical example of this is a gateway that can 
translate IPv4 to IPv6 headers and vice versa. Note that although this function is not very 
difficult to implement, some loss of functionality may be encountered during the 
translation (e.g., IPv6 extension headers might need to be dropped if similar options do 
not exist in IPv4). Therefore translation is limited to support the common denominator of 
the features of the two protocols.  

Example 3:  
For example 3, the left (blue) and the right (green) network compartments illustrated in 
Figure 3-21 are envisioned to be of completely different nature. For example, the 
communication stacks are completely different both in terms of number of layers (one 
compartment supports Layer 2 and Layer 3, whereas the other supports only L2 and L4) 
and in terms of protocols that are supported by each layer. Even in the case there are 
common layers between the adjacent compartment (common denominator), the 
compartment stacks may use very different protocols, both syntactically and semantically 
(e.g., one provides a best effort unicast service and the other provides an episodic 
publish-subscribe type of functionality), and identifier semantics (e.g., one uses 
identifiers that encode topological information and the other uses identifiers that encode 
service capability). In such a case, the communication entity “C/1” needs to have a very 
complex translation capability that not only spawns across all the common denominator 
of the layers of both stacks, but also needs to be able to collapse/expand layer 
functionality from one stack to the other.  

In addition to the complexity encountered so far, there is also the great challenge of 
naming, address and routing that needs to be resolved. As it is assumed for this type of 
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inter-compartment communication (Case 1) that the communication entities of the left 
compartment (blue) do not understand the identifier syntax and semantics of the right 
compartment (green), the gateway entity “C/1” needs to be able to make arbitrary 
decisions based on some external information (e.g., policies) how to propagate data from 
the source entity through the one compartment and then to the destination peer in the 
other compartment – without common addressing and routing semantics. 

The following analogy points out the difficulty and issues of direct communication 
between peers of adjacent compartments (Case 1) in case there is no common identifier 
space or overlay compartment (e.g., DNS) available: 

Two people that need to communicate without speaking each other’s language nor 
having a common language through which they can communicate. To resolve the 
issue, they need to find some third-party (e.g., “Babel fish” as described in 
“Hitchhiker’s Guide to the Galaxy”) that will be able to understand both languages. 

Conclusion:  
End-to-end communication across heterogeneous compartments without a common 
identifier space or overlay compartment is only possible if the peering compartments 
have a well-known translation function, both for the syntax and the semantics of the 
various identifier spaces and communication schemes.  

Case 2: With a common overlay compartment for the communication peers 
The following figure shows the same scenario, but under the condition that both 
communication peers are members of a common overlay compartment (e.g., a common 
DNS compartment or a common HIP compartment). This reduces the problem of direct 
communication between the peers of the adjacent compartments to the problem of routing 
and forwarding – as the peer entities have a common communication context.  

The gateway entity is not a member of the overlay 
compartment (i.e. it does not have an identifier and 
does not support the communication scheme of the 
Brown compartment)

x y

A B C 1
2 3

 

Figure 3-22. Inter-compartment communication scenario whereby the communication peers 
are members of a common overlay compartment 



FP6-IST-27489 ANA Project - Deliverable D1.4/5/6v1 – ANA Blueprint – First Version Page 29 

This case assumes that communication entity “A” of the left compartment (blue) and 
communication element “3” of the right compartment (green) are also members of a 
common overlay compartment. The common overlay compartment gives the 
communicating peers (“x” and “y”) a common identifier space that allows them to 
directly address each other, and a common communication context which allows the end 
hosts to understand the syntax and semantic of the exchanged data.  

As the gateway element “C/1” is not part of the overlay compartment in this scenario, it 
is not able to understand the syntax and semantics of the communication at that “layer”. 
The gateway is hence is not able to take this into account when translating between the 
different underlay compartments. However, most importantly, the fact that the gateway is 
not visible at the overlay level prevents the underlay routing mechanisms to take 
advantage of the routing knowledge of the overlay compartment (e.g., which gateway to 
choose in the underlay compartment to optimise the overlay routing path). 

Conclusion:  

As the gateway element “C/1” is not part of the overlay compartment, the routing 
knowledge that is available at the overlay compartment (i.e. how to get from “x” to “y”), 
cannot be used to identify the gateway node as an intermediate hop between two underlay 
compartments. The lack of end-to-end routing knowledge at the underlay compartment 
level leads to inefficient routing in case of inter-compartment communication. 

Case 3: With a common overlay compartment that includes the gateway entity  
The following figure shows the same scenario, but under the condition that the gateway 
entity “z/C/1” is also visible at the overlay compartment level. As a result, when “x” want 
to send packets to “y”, the underlay compartment can make use of the routing knowledge 
at the overlay level. Since the “next hop” in the overlay compartment, i.e. the gateway 
entity “z/C/1”, is also part of the left underlay compartment (blue), routing in the 
underlay becomes purely an intra-compartment issue. The routing knowledge of the 
overlay level is used by the underlay compartment to efficiently transmit the data from 
the source entity “x/A” to the correct gateway entity “z/C/1”.   

This case also includes the scenarios where the gateway entity does not support the actual 
communication scheme (e.g., data plane protocols) that is used in the overlay 
compartment, or where the overlay compartment is only used for addressing and routing 
purposes. For example, a gateway entity may simply “translate” between the different 
underlay compartments (without involving the “compartment stack” of the overlay 
compartment). The classical “bridge” between two distinct LAN technologies (e.g., IEEE 
802.x and IEEE 802.y) using the same address space (i.e. a common overlay 
compartment for addressing) is an example of such a scenario. The key difference to the 
case 2 type scenarios is that the addressing and routing knowledge of the overlay 
compartment is used to “translate” between the different underlay compartments.  
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The gateway entity is also a member of the overlay 
compartment (i.e. it does have an identifier in the 
Brown compartment and supports the communication 
scheme of the overlay compartment)  

Figure 3-23. Inter-compartment communication scenario whereby the communication peers 
and the gateway entity are members of a common overlay compartment 

Conclusion:  

As the gateway entity is now part of the overlay compartment, the routing knowledge of 
the overlay compartment (i.e. what is the “next hop” from “x” to “y”) can be used to 
efficiently route and forward the data within and across the underlay compartments. 
Hence, the availability of a common overlay compartment that not only includes the 
communicating peer entities, but also the gateway entities (e.g., “z/C/1”) enables efficient 
inter-compartment communication across heterogeneous underlay compartments.  

3.4.2.2 Principles for Inter-compartment Communication 
From the above analysis of different inter-compartment communication scenarios, the 
following principles or recommendation can be derived: 

1. There is a need for a common compartment among communicating peers 

Since compartments define the syntax and semantics for communication within a 
certain context, peers that want to communicate with each other must be part of a 
common compartment. Otherwise, they are not able to process (understand) the 
format and actual information carried in the exchanged data. 

2. It is advantageous to have a common “interworking” or overlay compartment  

The use of a common “interworking” compartment that provides a uniform 
context for the communication among its members, allows hiding of potential 
heterogeneity at lower layers (e.g., different underlay compartments). As 
indicated in the conclusion above, a common overlay compartment that includes 
the gateway entities of the various underlay compartments also allows for 
efficient end-to-end routing at the underlay level. 

The fact that ANA support flexible and dynamic composition of communication 
stacks facilitates the introduction of such interworking “shims” as the need arises. 
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3. There is a need for “interworking functionality” between adjacent compartments  

As indicated in the analysis above, inter-compartment communication among 
directly adjacent or layered compartments that are of different nature require 
appropriate interworking functionality, which allows “translation” between the 
different communication syntax and semantics of the compartments. Since the 
required interworking functionality depends entirely on the compartments that 
need to interwork with each other, there is no need for a common interworking 
function between all compartments along the end-to-end path – i.e. different 
interworking functions (depending on the compartments involved) can be 
provided. 

As illustrated in the analysis above, the focal point of the inter-compartment 
communication discussion are the gateway entities and the Interworking Functional 
Blocks (IFBs) that enable direct interworking between adjacent compartments. IFBs are 
conceptually part of directly peering compartments, and hence are able to “translate” 
between the different communication syntax and semantics of the different 
compartments. The IFBs are, for example, responsible for the mapping of the identifiers 
(i.e. name/address) as well as the translation/capsulation of the communication protocols.  

Figure 3-24 shows in more details how inter-compartment communication is handled in 
case of a common “interworking” or overlay compartment is used. The example is based 
on the same scenario as the one illustrated in Figure 3-23. In this scenario, there are three 
entities involved. Two peer entities, namely “x/A” and “y/3”, that want to communicate 
with each other despite the fact that they are not part of a common underlay compartment 
(e.g., because they don’t share a common link layer technology), and a gateway entity 
“z/C/1”, which is part of both underlay compartments.  

In order to allow for the peer entities to talk to each other, they are also part of a common 
overlay compartment. This offers the peer entities a common communication context, 
which allows the peers to address and resolve each other, and gives them a common 
communication protocol. Without a common communication context, the peer entities 
would not be able to indicate with whom they want to communicate, nor would they have 
a common understanding on what the exchanged messages mean. 

The fact that the gateway entity is also part of the common overlay compartment 
facilitates end-to-end routing across the heterogeneous underlay compartments. It allows 
the peer entity “x/A” to resolve the gateway entity “z/C/1” as next-hop at the overlay 
level. The IFB between the overlay and underlay compartment at the sender side (left) is 
thus able to map the ‘next-hop identifier’ at the overlay level (“z”) to a meaningful 
‘destination identifier’ in the underlay compartment (“C”). Note that in case the next-hop 
at the overlay level is not visible at the underlay level, the underlay compartment cannot 
resolve the destination entity in the underlay and hence can only forward/transport the 
data based on default routes or via some broadcast mechanism. 

In addition to the identifier mapping, the IFB is also responsible to handle any necessary 
protocol translations or the encapsulation of the payload for transmission of the 
information in the underlay compartment. On the gateway entity and the receiving end, 
the IFB performs the opposite functions, namely it decapsulates the information or 
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performs the necessary protocol translations between the underlay and the overlay 
compartment.   

Common Overlay Compartment

Underlay Compartment X

Inter-
working

Functional
Block 
(IFB)

Underlay Compartment Y

x y

A C 1 3

z

Peer Entity x/A

Gateway Entity z/C/1

Peer Entity y/1

 

Figure 3-24. Inter-compartment communication scenario with a common overlay 
compartment. 
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4 AUTONOMICITY IN ANA 

4.1 Information Management 
Achieving self-* properties requires the exchange of information of different types. For 
instance, self-configuration requires that an entity has knowledge about its own 
configuration, that it knows about components and resources which are potentially 
available for interaction and usage, and that it has reasoning capabilities about the impact 
of configuration changes.  Similarly other self-properties depend on the availability of 
information for the establishment of communication paths and optimization of network 
operation.  

There are three subclasses of information of particular relevance within the ANA 
architecture:  

• configuration information,  

• signalling information, and  

• monitoring information. 
 

Configuration information is used to configure a device or function. The configurations 
of a function or device may also change if signalling messages are received (e.g., queuing 
scheme if a reservation message passes a router). To distinguish the different information 
types, the usage of the information is relevant. For signalling the information is used to 
establish a communication. Configuration changes may occur as a consequence, but are 
not directly specified. In contrast to this, configuration information contains direct 
instructions to change parameter of devices or functions. Examples for configuration 
information are SNMP-or NETCONF-based messages. 

Signalling information comprises essentially control information. Signalling information 
is sent to devices or functions in order to establish or supervise a communication. Any 
kind of routing messages are examples of such information. Other examples include 
error, flow, and congestion control for data transportation. Messages for establishing TCP 
connection (SYN, FIN, ACK), resource reservation messages as used in RSVP and 
messages of the recently defined NSIS (Next Step in Signalling) protocol are considered 
as signalling information. Also SIP messages and other protocols that establish a 
communication on higher layers fall into this category. 

Monitoring information relates to information characterizing the dynamic behaviour of a 
system. Typically one can monitor the internal state of a network entity, e.g., the amount 
of free memory, current queue length, and available bandwidth. But monitoring 
information also includes triggering events like some observable value reaching a 
threshold, occurrence of packet bursts, suspicious sequence of packets indicating a 
potential intrusion, etc. Such information is gathered by measuring the system, either 
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passively (counting forwarded packets, reading some variables) or actively by generating 
probe traffic. 

4.2 Network Monitoring 
Autonomic networks are systems that provide self-management capabilities including 
self-configuration, self-optimization, self-healing, and self-protection (taking preventive 
measures and defending against malicious attacks). These functions are performed by 
feedback control loops.  

 

Figure 4-1. The Network Monitoring Component  

Monitoring is the element responsible for measuring the parameters of the controlled 
system that are relevant for the function under control (e.g., current load for performance 
optimization, link availability for fault tolerance, etc.).  

Current approaches to solving measurement problems often assume minimal support 
from nodes and protocols (e.g., active measurement) or place the entire burden on the 
nodes (routers) to support heavy-weight mechanisms (e.g., NetFlow or passive 
measurements in general). In the ANA monitoring framework, we argue that 
measurement must consider solutions which enlist the cooperation of nodes (routers), 
protocols, and tools.  

In addition, monitoring has been considered a static function in the past. In the ANA 
project, we aim at implementing a dynamic and adaptive monitoring system. As a 
consequence, the decision module starts and controls the monitoring system. That is, 
whenever necessary, the parameters under consideration are dynamically adapted to the 
needs of a given module.  

In the context of ANA node architectures, monitoring is implemented as a generic 
functional block. When other functional blocks require monitoring information for their 
decision processes, the monitoring functional block initiates and orchestrates the data 
collection and distribution of monitoring results.  
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Figure 4-2. Monitoring at various levels 

Conceptually, monitoring is always done inside a compartment; i.e., all nodes that 
participate in a monitoring task form a compartment. From an aggregation or information 
point of view however, ANA distinguishes three levels of monitoring:  

• ANA node-level: Monitoring is triggered locally by the node itself and data 
collection, computation, and evaluation functions are invoked within the node. 
Node-level monitoring falls into the field of system monitoring  

• ANA compartment level: Conceptually, compartment-level monitoring can be 
considered as infrastructure monitoring. At the compartment-level, it is 
orchestrated by decision makers responsible for the health and performance of a 
compartment. The decision makers issue for example data collection requests, or 
monitoring-data requests to sensing nodes or data collection points in the 
compartment. Data collection points also push monitoring data and event 
notifications to the decision makers. The monitoring includes observation of 
external events and event notifications to other compartments.  

• Inter-Compartment level: Traffic flowing between compartments is monitored by 
inter-compartment adjacent nodes for the detection of compartment failures, QoS 
violations, security threats or other failures. 

The ANA monitoring framework focuses on the architectural changes required to make 
the network more observable, and therewith more controllable.  
 

4.2.1 Key monitoring concepts 

Dynamic and adaptive Monitoring 
As described above, each functional block exposes parts of its internal information. The 
task of the monitoring functional block (or monitoring service) is then to collect and 
assemble the available information as well as to orchestrate the distribution of this 
information. External functional blocks (like for example a routing task or anomaly 
detection function) are then able to use this data.  

The monitoring framework is specifically designed to dynamically adapt to changes in 
the monitoring tasks. If for example, additional information is required to detect traffic 
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anomalies, the data capturing is updated “on-the-fly”. Also, to limit the resource 
consumption of the monitoring service, the service must be able to adapt autonomically 
(for example by adapting the capturing rate or by applying data sampling techniques).  

Secondly, the monitoring functional block must be able to adapt in its perimeter. 
Whenever necessary, additional monitoring sensors or monitoring processing units are 
installed and hence added to the monitoring compartment.  

Avoiding active measurements 
In the current Internet, monitoring tools apply active and passive measurement 
techniques. Passive monitoring captures system parameters (e.g., traffic volume and flow 
counts) and helps determine the causes of network performance problems as opposed to 
active measurement, which provides insights into the effects of network problems.  

With the current Internet architecture, some performance parameters can only be tested 
by applying active measurements. Note that active monitoring implies the interaction 
with the system, e.g., traffic is injected into the network and captured at a destination 
node.  

In an ANA network, we aim at a system, where active measurements are not necessary 
anymore. By combining passive measurement data, the decision process should be able to 
determine the same level of detail as obtained with active monitor probes.  

Monitoring compartment 
In a self-managing network a.k.a. an ANA network, some nodes may need to trigger 
monitoring functions on one another or on systems dedicated to monitoring tasks. We call 
the set of distributed functional blocks that play a role in a monitoring service a 
monitoring compartment. The triggering nodes have to be aware of the monitoring 
capabilities of the nodes in the compartment and must be able to locate the monitoring 
point of interest on the topology.  

Such a platform is an enabler for realizing a traffic monitoring compartment, which is a 
specialized case of a monitoring compartment. A traffic monitoring compartment is a set 
of functional blocks participating in a traffic monitoring objective in a distributed fashion 
across an ANA network. Note that a monitoring compartment might span over one single 
compartment or over multiple compartments. When multiple compartments are involved 
we speak of inter-compartment monitoring.  

4.3 Network Management 
Network-Management in an autonomic network requires the co-operation/collaboration 
of a number of management functions that are distributed in the network nodes. 
Traditionally network management is divided into five so called management planes 
namely: Fault-management, Configuration-management, Accounting-management, 
Performance-management and Security-management. This is known as the FCAPS 
management Framework.  
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In the course of this research, we seek to create a partial picture on how and where to 
place the following functions in an ANA node(s):  

• Configuration management functions,  
• Accounting management functions,  
• Performance management functions,  
• Security management functions and  
• Supervisory functions,  

in order to enable collaborative network management among nodes of a self-managing 
network. 

4.4 Resilience 
Resilience and survivability is regarded critical to the future of our network 
infrastructures. Resilience is the ability of the network to provide and maintain an 
acceptable level of service in the face of various challenges to normal operation. We aim 
to engineer a system to protect itself from these challenges and to recognize the impact 
autonomously if the defence could not isolate the effects. In this case the system services 
must self-organize themselves to remain accessible whenever possible and degrade 
gracefully when necessary. As soon as the challenge ended the system must automatically 
and rapidly recover from degradation to normal operation. To improve future operation of 
a resilient system, it has to learn from past incidents and refine its operational and 
defensive mechanism. 

On the other hand self-organizing and autonomic behaviour is necessary for network 
resilience that is highly reactive with minimal human intervention (see resilience 
principle 11). A resilient network must initialize and operate itself with minimal human 
configuration, management, and intervention. Ideally human intervention should be 
limited to that desired based on high-level operational policy. The phases of autonomic 
resilient networking consist of:  

• initialization – auto-configuration of network components and their self-
organization into a network  

• steady-state normal operation – self-managing with minimal human interaction 
dictated by policy and self-optimizing to dynamic network conditions  

• steady-state expecting faults and challenges – self-diagnosing and self-repair  

This principle is one of a set of principles and four axioms introduced by the resilience 
framework. Notably, the axioms are: 

A0. Inevitability of Faults  
A1. Understand Normal Operations  
A2. Expect Adverse Events and Conditions  
A3. Respond to the Adverse Events and Conditions 
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which are supported by a set of principles: 

P1. Service Requirements determine the need for network resilience  
P2. Normal Behaviour must be specified, verified, and refined through 

monitoring to understand normal operations  
P3. Threat and Challenge Models are essential to understanding and detecting 

potential adverse events and conditions  
P4. Metrics are needed to measure and engineer network resilience  
P5. Resource Tradeoffs determine the deployment of resilience mechanisms  
P6. Complexity of the network in general, and resilience in particular, must be 

reduced to maximise overall resilience  
P7. Multilevel Resilience is needed with respect to protocol layer, protocol plane, 

and hierarchical network organisation  
P8. Translucency is needed to control the degree of abstraction vs. the visibility 

between levels 
P9. Trust and Policy relationships are necessary in multi-user, multi-provider 

networks; resilience mechanisms must consider this tussle  
P10. Redundancy in space and time increases resilience against faults and some 

challenges  
P11. Diversity in space, time, medium, and mechanism increases resilience against 

challenges to particular choices  
P12. Self-Organising and Autonomic behaviour is necessary for network resilience 

that is highly reactive with minimal human intervention  
P13. Security and Self-Protection is an essential property of entities to defend 

against challenges in a resilient network  
P14. State Management is an essential aspect of networks in general, and resilience 

mechanisms in particular; the alternatives of how to distribute and manage this 
state are critical to resilience  

P15. Connectivity and Association among communicating entities should be 
maintained when possible, but information flow should still take place even 
when a stable end-to-end path does not exit  

P16. Context Awareness is necessary for network components to operate 
autonomously to detect challenges  

P17. Adaptability to the network environment is essential for a node in a resilient 
network to detect, remediate, and recover from challenges  

P18. Evolvability is needed to refine future behaviour to improve the response to 
challenges, as well as for the network architecture and protocols to respond to 
emerging threats and application demands  

Based on these axioms and principles we investigated current network systems from a 
service-oriented point of view. These service descriptions can then be tested against 
possible threats which can affect the network system.  
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The result of this investigation is our six-step two-phase strategy D2R2+DR for resilient 
network systems:  

1. Real-Time Control Loop – D2R2: 

S1. Defend against challenges and threats to normal operation 
S2. Detect when an adverse event or condition has occurred 
S3. Remediate the effects of the adverse event or condition to minimise the 

impact 
S4. Recover to original and normal operations, including control and 

management of the network 

2. Background Diagnosis and Refinement – DR: 

S5. Diagnose the fault which has been the root cause of an error or failure 
S6. Refine behaviour for the future based on past D2R3 cycles 

The integration of this strategy into the ANA architecture will be one of the challenges 
we are going to face in the ongoing research. To start this process, an initial design of 
components and interfaces to build a resilient network system has been developed and 
several open issues which must be further investigated have been identified. 
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5 ANA NODE 

5.1 Introduction and scope 
The content of this section mainly results from the work being carried out in tasks 1.3 
(Network abstractions and communication paradigms) and 1.4 (Communication 
mechanisms) of work package 1, and task 4.1 (Testbed prototyping, management, and 
evaluation) of work package 4. While section 3 of this document provides a conceptual 
description of ANA and its operation, this section focuses on the description of the future 
implementation of ANA and how the abstract mechanisms previously presented are 
provided by “the low-level machinery” of the architecture. The objective of the two 
sections (3 and 5) is to provide a complete picture of ANA, from the conceptual 
abstractions and mechanisms down to the specification of the APIs offered at the 
implementation level. 

This section is organised as follows. Subsection 5.2 provides an overview of the 
functionalities of the ANA node and introduces its main components. These components 
are then described in more details in subsection 5.3, and subsection 5.4 finally introduces 
the set of APIs that will be provided by the architecture. 

5.2 Overview of the ANA Node functionalities  
The ANA Node is a collection of both mandatory and optional software components that 
basically allow “to run ANA” on a physical device (e.g., computer, sensor, network 
processor, switch, router, etc). Three components can be identified:  

• MINMEX, a minimal component for configuring and re-configuring network 
functionality. 

• ANA Playground, where optional functionality is made accessible. 
• ANA hardware abstraction layer. 

Each of these elements, also shown in Figure 5-1, is briefly introduced in this section.  

The mandatory and underpinning component called MINMEX provides the basic low-
level functionalities which are required to bootstrap and run ANA. It also provides the 
generic set of methods (APIs) that are used by “clients” of the MINMEX (i.e. protocols, 
applications) to interoperate with MINMEX and the elements it hosts and with other 
clients of the architecture. The MINMEX is described in details in section 5.3.  

The ANA Node also implements an abstraction layer which offers a generic access to the 
hardware upon which it is executed. In particular, the abstraction layer has built-in 
functions to access network interface cards either via the hosting operating system (e.g., 
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Linux) or via dedicated drivers on e.g., embedded devices like network processors. To 
support legacy applications, an ANA Node can also provide an adaptation layer in 
environments that support e.g., Internet-style applications using the standard socket 
programming APIs. This allows re-using existing applications in ANA without having to 
modify their code and re-compile them. For applications specifically developed for ANA, 
the ANA Node provides a set of generic APIs that gives full access to all the 
functionalities of the ANA architecture.  

Beside these two compulsory components, the ANA node provides a development 
framework (i.e. another set of APIs) coupled with a dedicated execution environment 
where the more elaborated and complex networking functionalities of ANA are placed. 
This flexible component, known as the “Playground”, can host commodity and 
potentially generic networking elements such as monitoring probes, routing protocols, 
and cryptographical services, up to self-contained network stacks, generic peer-to-peer 
middleware, and complex and dedicated learning algorithms. By design, the ANA 
Playground hosts the autonomic protocols that will exhibit a self-* behaviour.  

Note that in contrast to functional blocks (FBs), information channels (ICs), and 
information dispatch points (IDPs) introduced in section 3.1, the ANA node is not an 
abstraction of ANA. The ANA node is rather defined as the “recipient” that hosts 
fundamental elements: that is, the “node” is a property (”item x IS ON node y”), not an 
element that we need to define as an abstraction in our architecture. Only indirectly, the 
“ANA node property” is also captured through the compartment concept, wherefore it is 
also called the “ANA node compartment” (see section 3.2). By design, it becomes 
possible to query an ANA node in order to learn not only what high-level functions and 
services it hosts but also what network compartments it is connected to. This opens the 
way to offer choice to application on how to perform a communication task, while today 
an application hard-codes the network it wants to connect to (e.g., via well known 
protocol values such as AF_INET or AF_INET6 in socket programming). 

5.3 ANA Node: architecture and components 
The figure below is a conceptual representation of an ANA node whose most prominent 
features are the MINMEX area (Minimal INfrastructure for Maximal EXtensibility) and 
the Playground. The MINMEX area defines the common denominator among ANA 
nodes, and MUST be present in all implementations. The Playground hosts the optional 
protocols that one is free to develop with the help of the functionalities provided by the 
MINMEX elements. Note that although the Playground strictly contains optional 
components, a typical ANA implementation will be shipped with a set of “standard” 
features to permit access to basic network compartments. 
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Figure 5-1. The three components of an ANA node, embedded in an OS context. 

The “MINMEX approach” followed in the design of ANA permits to focus on a 
simplified core and declare richer and more complex functionality as prolongations of the 
architecture. In a sense, MINMEX forms the constant part of an ever evolving network: it 
is more an architecture framework than a network architecture by itself. Thus, a central 
role of MINMEX is to provide the generic functionalities to instantiate and run network 
compartments code and to provide a dedicated execution environment for each “instance” 
of a network compartment, should a node support many instances.  

The operations offered by the MINMEX can be characterized as follows: 

• Means to forward packets between applications, functional blocks, and interfaces. 
• A basic directory service allowing access to ANA communication mechanisms, 

protocols, and compartments. 
• A bootstrap procedure used to sense the network environment and activate 

compartments from the Playground. 
• A MINMEX controller which performs a continuous assessment of the basic 

operation of an ANA node. 

In the following subsections 5.3.1 to 5.3.4 we provide a more detailed description of 
these four basic areas covered by MINMEX. 
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5.3.1 The information dispatch framework (IDF) 
As largely introduced in section 3.1 of the Blueprint, the distribution of data packets in 
ANA is achieved via IDPs (Information Dispatch Points). To briefly recap, data packets 
are always sent to an IDP which is itself bound to a functional block (FB) or an 
information channel (IC) (at least conceptually). This approach provides ANA with 
powerful indirection capabilities that permit to seamlessly redirected packet flows 
according to network internal needs without the sender having to become aware of any 
change: it will still send data to the same (start) IDP.  

As shown by the set of examples of the node compartment section (3.2), data following a 
communication path is typically sent to a start IDP and then passed on through a chain of 
functional blocks to the downstream IDPs. This process is somehow similar to the hop-
by-hop forwarding of data in today’s Internet. However while in the Internet a “hop” in 
the forwarding process is typically a network hop (i.e. data is passed on to a neighbouring 
network node), ANA extends and generalizes this concept to data being forwarded inside 
a node among FBs and to other (network-wide) nodes via ICs. Note that while (strictly 
speaking) data is sent to an IDP, it is up to the entity bound to the IDP to know to which 
“next hop IDP(s)” the data should be forwarded. Hence while conceptually IDPs are 
powerful abstractions of ANA, implementation-wise an IDP is actually an entry in a 
functionally enriched forwarding information base (FIB).  

The forwarding procedure inside ANA is illustrated in the Figure 5-2, which shows data 
being 1) received by a node compartment, 2) forwarded inside the node compartment and 
3) forwarded to a distant node via an information channel. Data is received by IDP b 
which is bound to FB f2 that has next-hop IDP c. Data dispatching carries on until 
reaching IDP e which calls a low-level function provided by the ANA Node abstraction 
layer that sends data via a network interface. Typically for link-layer forwarding, IDP e 
will store the information (e.g., MAC address) needed to reach the next hop network 
node. Note that the figure also provides an abstract representation of the forwarding table 
being used.  

app

b

a

c d

e

f2
f1
f3

a -> f1(e)
b -> f2(c)
c -> f3(d)
d -> fwd(e)
e -> eth-if(0)

Information 
Dispatch Table

 

Figure 5-2. Data dispatch inside ANA. 

In practice and as described in section 5.4, the interaction with the information dispatch 
framework is achieved via dedicated APIs: at the conceptual level one manipulates IDPs 
and has no direct access to the (real) internal data structure. With these APIs the (local) 
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instance of a network compartment can create and delete IDPs and set per-IDP mandatory 
information such as the function bound to the IDP and the next hop IDP.  

A critical feature of the information dispatch framework (IDF) is that it is fully address 
and name agnostic: IDPs are identified by local labels (i.e. numbers) which have no 
networking meaning whatsoever. This is a key requirement since the IDF must dispatch 
data that (conceptually) belong to radically different compartments with any sorts of 
addressing and naming schemes. This neutral position allows this core component to 
support any new addressing or naming scheme that can be developed in the future.  

To separate concerns, IDPs are stored in Information Dispatch Tables (IDTs). An IDT 
typically contains all the (node local) IDPs that belong to some communication context, 
e.g., a given compartment or a given view of the node compartment. This conceptual 
separation prevents, e.g., unauthorized manipulations of IDPs or excessive resource (e.g., 
memory) consumption by misbehaving or faulty components. Note that implementation-
wise there may only be one table where each entry (IDP) would contain a field indicating 
which IDT it belongs to.  

To conclude this subsection, it is worth reminding that while the information dispatch 
framework provides flexible and powerful mechanisms to create and dynamically modify 
data paths, it is not responsible for setting up and changing these paths. That is, the 
“control” is typically left to higher level entities such as the functional composition and 
monitoring frameworks, native ANA applications, and functional blocks.  

5.3.2 Key-Val Repository 
Although conceptually a compartment contains a database where membership 
relationship is stored, outside clients cannot access this database directly, in general. An 
ANA node compartment, however, makes this database partially accessible through a 
key-val repository. Third parties can create entries with self-chosen values which then 
later can be retrieved via the standard “resolve” functionality.  

As an example, we envisage (physical) nodes in an ANA network to announce available 
services to neighbours by depositing entries in the neighbour’s key-val repository. Local 
clients will use the resolution process to discover these services and to obtain access to 
them via a local IDP. Behind the local IDP, the remote node has made sure that service 
requests are forwarded appropriately to where the service request will be worked on.  

In a first phase, a simple tuple storage is provided, akin to a MIB with (one level of) key-
value associations. This key-val store will be used for system variables, binding of 
method names to the function and scratch memory for coordination among extensions, 
for example. Different policies for adding, extracting and erasing entries will be explored: 
As we gain more experience with the usage and the requirements of ANA-aware 
networking functionality, a more sophisticated database interface will be proposed.  
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5.3.3 The bootstrap procedure (BP) 
The bootstrap procedure (BP) is a set of generic mechanisms that must be supported by 
all implementations of ANA. It is used by an ANA node to discover its immediate 
surrounding network environments such as e.g., neighbouring nodes and active and 
reachable compartments. Since the bootstrap procedure is the first network component of 
ANA to be executed, it cannot rely or use data paths created and maintained by 
“production” protocols. This hence requires that the operation of the BP is fully 
independent.  

In practice, the bootstrap procedure may initially rely on a simple (broadcast based) 
discovery phase which will generate entries in the key-val repository. Note that the 
bootstrap protocol may also be configured to kick-start a more complex service discovery 
framework that would be executed in the Playground (see deliverable D2.1 [3] for a more 
detailed of service discovery in ANA). However, all ANA implementations must support 
the generic mechanisms in order to guarantee the presence of a least common 
denominator.  

In addition to discovering its neighbourhood, the BP also loads the static configuration of 
the ANA node. This configuration is typically maintained by human users and specifies 
which compartments should be instantiated upon start-up and if a compartment should be 
used by default. It may also instantiate functional blocks and information dispatch points 
and activate protocols that reside in the Playground.  

5.3.4 The MINMEX Controller (MC) 
The MINMEX controller (MC) performs a continuous assessment of the basic operation 
of an ANA node. It is truly autonomic and basically performs a sanity and health check of 
the components running inside the node. The core objective of the MINMEX controller is 
basically to “protect” the MINMEX elements from faulty or misbehaving components in 
order to guarantee the performance of the ANA subsystem. Keeping such control separate 
and not embedded in all the other elements is beneficial for two main reasons. First, it 
simplifies the design and code of the other MINMEX elements and second, it allows 
control operations to be centralised and coordinated in one entity. The main drawback is 
that all control relies on a single entity which becomes a very sensitive component of the 
architecture. However, the MINMEX controller could potentially be implemented in a 
distributed way which would greatly reduce the risks of a total unrecoverable failure.  

The rest of this section outlines some of the fundamental activities of the MINMEX 
controller (MC). This description is not exhaustive and additional tasks may be added in 
the future as needs appear. However, note that the following control operations are 
mandatory and must be supported by all implementations of ANA.  

• The MC periodically controls all the forwarding paths and states of the 
information dispatch tables. In particular, it must detect forwarding loops which 
may have been accidentally created. If a loop is detected, the MC must prevent 
entities to send data on the loop: this interfering action must generate an 
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appropriate error code back at the sender side. Data circulating inside a loop must 
be destroyed. 

• The MC performs a garbage collection of unused or expired IDPs that may have 
become orphan IDPs if the entities using them are malfunctioning or have 
crashed. Such IDPs must be removed from the system in order to free resources. 
Note that this verification may become redundant or obsolete if IDPs are stored in 
a soft state manner. 

• In a similar manner, the MC performs a garbage collection of the entries of the 
key-val repository. This task may also become redundant or obsolete if the entire 
repository relies on soft state storage. 

• In addition, the MC periodically controls the state of all the active functional 
blocks running in the system. If the MC detects that a functional block is 
malfunctioning or crashed (via e.g., the failure of a polling mechanism), the MC 
must either remove the FB from the system or try to re-instantiate this 
functionality. The action to be taken in the case of a failure may be specified by 
the FB itself upon start-up. 

• The MC provides the lowest level of access rights and control for accessing 
information dispatch tables. For example and as already described, MINMEX 
may maintain separate IDTs for different communication contexts: in that case, 
the MC must prevent un-authorised access to IDTs and return an appropriate error 
code to the entity performing the rejected operation. 

5.3.5 The Playground 
The Playground contains all the optional extensions of the base ANA node. This is where 
complex protocols and functions are implemented and where network-wide autonomicity 
is achieved. It is the area where variety will exist, perhaps even programmability in an 
active networking sense. Note that in the remainder of this section we intentionally avoid 
using the term “functional block” to refer to protocols and functions residing in the 
Playground: an FB may indeed contain multiple functions or a given functionality may be 
implemented in a distributed way by multiple FBs. We hence prefer to use a more neutral 
vocabulary.  

Typically, the Playground will host both commodity and dedicated functionalities. 
Commodity elements are “public” components that one can re-use in order for example to 
compose more complex functions in an on-demand manner. This includes, e.g., 
cryptographical primitives, compression schemes, queuing systems, reliable transmission 
schemes, generic learning algorithms, and error recovery codes. How such elements can 
be dynamically composed is described in deliverable D2.2 [4].  

The Playground may also contain complex components that are specialised for a certain 
task and can hardly be re-used outside their initial design space. This category includes, 
e.g., fully-contained network stacks/heaps (”compartments code”), highly dedicated and 
optimized protocols such as delay-tolerant transmission schemes, and schemes for 
network coding. This classification is highly subjective and does not exist inside the 



FP6-IST-27489 ANA Project - Deliverable D1.4/5/6v1 – ANA Blueprint – First Version Page 47 

Playground: we here merely want to highlight that functions inside the Playground range 
from simple re-usable components to complex and highly specialized elements.  

Note that in practice, the protocols of the Playground interact with the MINMEX 
elements via specific APIs that allow them to, e.g., initially communicate with the node 
compartment and then with network compartments, instantiate functional blocks and 
information dispatch points, and create information channels to distant peers.  

5.4 MINMEX API 
This section introduces a strawman API for ANA. It serves mostly as an internal 
technical development document and is a prerequisite for implementing the first ANA 
prototype. We envisage that this API will undergo substantial changes; however, it is also 
important to document this API already now in order to help readers understand high 
level concepts introduced earlier in the blueprint, by permitting to relate the high level 
concepts almost to bits and bytes. Part of this API will, in a later phase, form the basis to 
write RFC-style documents enabling any third party to implement an interoperable 
version of ANA.  

Positioning of this API: We envisage that an application which wishes to use ANA 
functionality will start, in a first place, outside ANA. It has to formally connect to ANA, 
whereafter it can insert itself into the ANA world, or simply use ANA services. The API 
is at the border of the execution environment the application is running in. Below this 
API, there can be a shim interface directly to some OS kernel, or it can be a user space 
implementation of a full ANA node, or proxying code that connects to a remote ANA 
node, in form of a library, or classes etc.  

The ANA API is subdivided in different packages, or levels, that rely on each other.  

• API Level 2 (AL2): provides access to ANA functionality with transparent method 
invocation or remote procedure calls 

• API Level 1 (AL1): provides access to ANA “first order citizens” with typed 
message exchange. 

• API Level 0 (AL0): provides access to ANA low level functionality, offering raw 
datagram exchange. 

• API Level -1: offers a choice of different connectivity technologies. 

API Level 1

API Level 2

API Level 0

API Level -1

"ANA object"

methods

messages

datagrams

ANA Abstraction layer
 

Figure 5-3. API Levels in ANA. 
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These levels express different degrees of sophistication and do not imply a layering as in 
networking. If an ANA application wishes, it could be fully based on level 0, in the same 
way an X-Window application could be written at the level of pixels, instead of widgets.  

In the following we introduce for each API level a list of initial functions or methods as 
we see them at a time point before the actual prototype implementation.  

5.4.1 Level 2 API 
At API level 2, a programmer sees ANA in terms of ordinary objects. Functionality can 
be accessed through ordinary method calls, object destruction automatically runs the 
necessary low level cleanup actions. In the following, the API is expressed in a mixed 
style of Java and C++ language.  

 
class anaCompartment { 

  anaCompartment(String howToAttach); 

  ~anaCompartment();        

  getDescription(); 

  register(String id);     // registers a member in the compartment 

  deregister(String id);   // deregisters a member from the compartment 

  instantiate(String id);  // get access to a compartment 

createIC(String id);      // resolve a compartment member, returns a channel 

lookup(String id);       // check reachability 

… 

} 

  

class anaIC { 

  send();              

  getDescription(); 

} 

  

class anaFB { 

  getDescription(); 

} 

 

These class definitions are only for demonstration purposes and are not indicative for the 
number and type of methods. 

5.4.2 Level 1 API 
At API level 1, we provide a library of procedures for interacting with ANA 
compartments, information channels and functional blocks by sending control protocol 
messages. This library also contains the logic for carrying out the dialogue (request/reply 
patterns etc) with some remote “object”.  

The AL1 procedure does not remove the need to establish and manage communication 
with an ANA node at AL0. But once attached (using AL0 procedures), an application can 
use the rest of the functions of this level to easily talk to ANA objects through IDPs, e.g., 
having ready-made procedures for creating requests and parsing result messages etc.  
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We envisage that each ANA object provides for its methods two procedures for “external 
representation handling”. The pattern used for naming these functions is as follows:  

• anaL1_enc[Object][Command]: builds the control message in the right format 

• anaL1_dec[Object][Command]: parses the formatted reply and extracts the 
needed information. 

In this section we use a C style language for writing down the API:  
 
#ifndef _ANA_AL1_H 

#define _ANA_AL1_H 

  

#include "ana-AL0-20070126.h" 

  

typedef struct { // defines the format of the control and 

   // result messages, left open for now 

 char parameters[100]; 

} msgFormat; 

  

int anaL1_requestReply(anaHandle_t handle, anaLabel_t label, 

         msgFormat *data, unsigned short len, 

         anaCallback_t fct, void *aux ); 

/* The requestReply function will send the given data, 

   i.e. 'len' Bytes, to the given label. 

   Beforehand and internally, a "return IDP" is created 

   and bound to the indicated function fct. This function 

   will receive an upcall once the result is ready. 

   Returns 0 on success, a negative value otherwise. 

*/ 

   

// Below we provide an example of two formatting functions 

// that a client might use when talking with an ANA compartments. 

// These functions will only build a correct control or result 

// message; The sending is done with requestReply function 

// described above . 

  

int anaL1_encCompartmentLookup(char *id, msgFormat *msg, int *len); 

/* This function creates a lookup message (returned in msg)  

   of the given id value. When calling, *len should contain 

   the size of *msg. On return, *len has the actual number of 

   bytes needed by the encoded message. 

   Returns 0 on success, a negative number otherwise. 

*/ 

  

int anaL1_decCompartmentLookup(msgFormat *replyMsg, char *fieldName, 

          void* val, int *len); 

/* This method parses a reply message from a lookup() request 

   and returns the found value (to be selected by the field's 

   name) where the val parameter is pointing to. 

   On input, '*len' contains the number of bytes where the 

   results can be written to. On return from this function, 

   '*len' will contain how many Bytes were written into the 
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   val location. 

   Returns 0 on success, a negative number otherwise. 

*/ 

  

#endif 

 
The following figure lists the AL1 functions for the time being. Please note that the 
exhaustive list of control functions proposed is not definitive, it will most certainly be 
modified during the development process. 

encCompartmentCreateIC(id)
decCompartmentCreateIC(msg)

encCompartmentLookup(id)
decCompartmentLookup(msg)

encCompartmentInstantiate(id)
decCompartmentInstantiate(msg)

encCompartmentRegister(id)
decCompartmentRegister(msg)

encCompartmentDeRegister(id)
decCompartmentDeRegister(msg)

encCompartmentDetach()
decCompartmentDetach(msg)

encFBGetDescription()
decFBGetDescription()

encICGetDescription()
decICGetDescription()

encICDetach()
decICDetach(msg)

encCompartmentGetDescription()
decCompartmentGetDescription() Compartment Access 

Object

GetDescription(…)
CreateIC(…)
Lookup(…)
Instantiate(…)
Register(…)
DeRegister(…)
Detach(…)

Functional Block

GetDescription(…)

Information Channel

GetDescription(…)
Detach(…)

anaL1_R
equestR

eply(…
)

 

Figure 5-4. API level 1 functions. 
 

5.4.3 Level 0 API 
In Level 0 we group all basic functions that permit to access an ANA node in a platform 
unspecific way. 

 
#ifndef _ANA_AL0_H 

#define _ANA_AL0_H 

  

typedef int           anaHandle_t; // <0 is an invalid handle 

typedef unsigned int  anaLabel_t;  // IDP identifier, 0 is an invalid label 

typedef void          (anaCallback_t)(void *data, int len, void *aux); 

  

typedef struct { 

    anaHandle_t handle; 

    anaLabel_t label; 
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} anaControlLink_t; 

  

int anaL0_attach(char *howToAttach, anaControlLink_t *link); 

/* Establishes the link with the ANA node compartment 

   identified by "howToAttach". An NULL id will let the local 

   system choose the most appropriate ANA node implementation 

   available through some locally defined means (UDP, pipe etc) 

   Returns 0 if attaching succeeds, a negative value otherwise. 

*/ 

  

int anaL0_detach(anaHandle_t h); 

/* Terminates the attachment to an ANA node compartment. 

   The handle "h" must have been obtained via anaL0_attach(). 

   Returns 0 if successful. 

   All resources inside the ANA node compartment that were 

   allocated during the session are released. This also 

   includes "unlabeling" all IDPs created by this client. 

*/ 

  

int anaL0_send(anaHandle_t h, anaLabel_t lab, void *data, 

               unsigned short len); 

/* Sends a data packet of length "len" to the information 

   dispatch point labeled with "lab". 

   Returns 0 on success. Note that this is an unreliable 

   transmission (i.e. the packet can be lost despite a success 

   return code). 

*/ 

  

int anaL0_registerCallback(anaHandle_t h, char *id, 

      anaCallback_t fct, void *aux, 

      anaLabel_t *label); 

/* Requests the ANA node compartment to create a callback 

   information dispatch point, returns the chosen label. 

   Using a NULL "id" leads to an anonymous IDP that can 

   not be looked up via its id, although it can be used by 

   those knowing its label. 

   Any packet sent (e.g., by others) to this IDP will result 

   in an upcall to "fct", also passing the "aux" parameter 

   beside the actual packet. 

   Note that the transmission is unreliable i.e., packets 

   sent to the IDP may never lead to calling "fct". 

   Returns 0 on success, a negative value otherwise. 

*/ 

  

int anaL0_unregisterCallback(anaHandle_t h, anaLabel_t label); 

/* Unbinds the callback that is bound to the given label. 

   The label and any associated resources (e.g., id) are freed. 

   Returns 0 on success, a negative value otherwise. 

*/ 

  

#endif 
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5.4.4 Level -1 API 
The -1 level defines the platform dependant initial communication mechanisms between 
the client and the ANA node. It is used by the anaL0_attach function, to attach a client to 
the ANA world. The communication mechanisms used in this level are by then exterior to 
the ANA world, which is reflected by the negative index of this API‘s level.  

Being platform dependant by nature, this API is not specified in this document and is 
dependant on the development process. Communication between the client and the ANA 
node at this level can be implemented in different ways (e.g., named pipes and UDP 
sockets). 

5.4.5 Example Scenario 
In this scenario a client A wishes to communicate with a client B present in the same 
LAN. The needed steps for this communication are detailed below:  

• Step 1: Client A attaches to the default ANA Node Compartment on it’s runtime 
system 

 

• Step 2: Client A receives in return an IDP label a for control communication with 
the ANA node compartment 

• Step 3: Client A registers an IDP label b for future result messages and maps it to 
the treating function Function1 
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• Step 4: Client A then asks the node compartment to instantiate the Ethernet 
compartment 

• Step 5: Client A receives an IDP label c for control communication with the 
Ethernet compartment 

 

• Step 6: Client A then registers an IDP label d for future control responses of the 
Ethernet compartment and maps it to the treating function Function2 

• Step 7: Client A then requests the Ethernet compartment to lookup the client B 
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• Step 8: Client A receives in return the IDP label e to communicate with client B 
• Step 9: Client A sends a “Hello world " message to B through IDP e 

 
 

5.4.6 Code samples for levels 2, 1 and 0 
In this section we demonstrate the use of the ANA API AL0 to AL2 for implementing the 
scenario described in the previous section.  

Programming at ANA API Level 2:  
 
main() { 

   anaCompartment node = new anaCompartment(); 
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   /* covers steps 1, 2, 3*/ 

   anaCompartment EthCompartment = node.instantiate("eth-access-0"); 

   /* covers steps 4, 5, 6*/ 

   anaIC chann = EthCompartment.createIC("00:11:22:33:44:55"); 

   /* covers steps 7, 8, 9*/ 

   chann.send( "Hello World!"); 

   /* step 10 */ 

} 

Programming at ANA API Level 1:  
 
#include <stdio.h> 

#include <stdlib.h> 

#include "ana-AL1-20070126.h" 

  

static anaHandle_t handle; 

static void fail(char *reason){ 

 fprintf(stderr, "demo failed: %s\n", reason); 

 exit(-1); 

} 

  

static void ethReplyUpcall(void *data, int len , void *aux) 

{ 

 msgFormat *reply = (msgFormat *) data; 

 anaLabel_t infoChannLabel; 

 int dummy; 

 char *msg = "Hello World!"; 

  

 anaL1_decCompartmentLookup(reply, "label", 

       &infoChannLabel, &dummy); 

 /* step 8 done*/ 

  

 anaL0_send(handle, infoChannLabel, msg, sizeof(msg)+1); 

} 

  

static void nodeReplyUpcall(void *data, int len , void *aux) 

{ 

 msgFormat *reply = (msgFormat *) data; 

 anaLabel_t ethCompartment; 

 msgFormat ethLookupRequest; 

 int dummy, requestLen; 

  

 anaL1_decCompartmentInstantiate(reply, "label", 

     &ethCompartment, &dummy); 

 /* step 5*/ 

  

 requestLen = sizeof(ethLookupRequest); 

 anaL1_encCompartmentLookup("00:11:22:33:44:55", 

       &ethLookupRequest, &requestLen); 

    

 requestReply(handle, ethCompartment, &ethLookupRequest, 

       requestLen, ethReplyUpcall, 0); 

 /* steps 6 and 7 */ 
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} 

  

int main() 

{ 

 anaControlLink_t ctl; 

 msgFormat nodeRequest; 

 int requestLen; 

  

 if (anaL0_attach(0, &ctl)) 

  fail("attach"); 

 handle =  ctl.handle; 

 /* steps 1 and 2 performed */ 

  

 requestLen = sizeof(nodeRequest); 

 anaL1_encCompartmentInstantiate("eth-access-0", 

     &nodeRequest, &requestLen); 

 requestReply(handle, ctl.label, &nodeRequest, 

       requestLen, nodeReplyUpcall, 0); 

 /*  steps 3 and 4*/ 

  

 // ... more actions here ... 

 return 0; 

} 

Programming at ANA API Level 0:  
(In the following code sample we assume that the control messages are encoded as 
ASCIIZ strings).  

 
#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include "ana-AL0-20070126.h" 

  

static anaHandle_t handle; 

static anaLabel_t nodeSendLabel; 

static void fail(char *reason){ 

 fprintf(stderr, "demo failed: %s\n", reason); 

 exit(-1); 

} 

  

static void ethCtlMessageUpcall(void *data, int len, void *aux) 

{ 

 anaLabel_t infoChan; 

 char *msg = "hello ANA world!"; 

  

 /* step 8 : we extract from the data the label of the 

    information channel, store in  infoChan Label */ 

 sscanf((char*) data, "u", &infoChan); 

   

 if (anaL0_send(handle, infoChan, msg, strlen(msg)+1)) 

  fail("could not send packet to information channel"); 

 /* step 9 done*/ 
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} 

  

static void nodeCtlMessageUpcall (void *data, int len, void *aux) 

{ 

 char cmd[1000]; 

 anaLabel_t ethLabel; 

 anaLabel_t ethReplyLabel; 

  

 /* step 5 : we extract from the data the label of the 

    Ethernet compartment */ 

 sscanf((char*) data, "%u", &ethLabel); 

   

 ethReplyLabel = anaL0_registerCallback(handle, 

    "eth-access-0", ethCtlMessageUpcall, 0); 

 if (ethReplyLabel == 0) 

  fail("could not register callback"); 

 /* step 6 done*/ 

  

 sprintf(cmd, "lookup id=00:11:22:33:44:55 return=%s)", ethReplyLabel); 

 if (anaL0_send(handle, ethLabel, cmd, strlen(cmd)+1)) 

  fail("could not send packet to Ethernet compartment"); 

 /* step 7 done*/ 

} 

  

int main () 

{ 

 anaLabel_t     nodeRecvLabel; 

 char           cmd[1000]; 

 anaControlLink_t  ctl; 

  

 if (anaL0_attach(0, &ctl)) 

  fail("could not attach to ANA node"); 

 handle =  ctl.handle; 

 nodeSendLabel  = ctl.label; 

 /* step 1 and 2 done*/ 

  

 // the client registers an IDP for receiving 

 // results from the ANA node compartment 

 nodeRecvLabel = anaL0_registerCallback(handle, 0, nodeCtlMessageUpcall, 0); 

 if (nodeRecvLabel == 0) 

  fail("could not register callback"); 

 /* step 3 done*/  

  

 sprintf(cmd, "instantiate id=eth-access-0 return=%s", nodeRecvLabel); 

 if (anaL0_send(handle, nodeSendLabel, 

   (unsigned char*) cmd, strlen(cmd)+1)) 

  fail("could not send packet to node compartment"); 

 /* step 4 done*/       

  

 // ... code continues 

  

 return 0; 

} 
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6 INFORMATION MANAGEMENT 

Achieving self-* properties requires more than just acquiring raw data about the 
operating environment and state. This data has to be used, i.e., transformed into 
information that can be effectively used to achieve these properties. For instance, self-
configuration requires that an entity knows its configuration, that it knows the 
components and resources which are available for potential adaptation, and that it can 
reason about the impact of configuration changes. Furthermore, self-healing requires that 
a system is able to define or to learn what the normal condition is and compare it with 
monitoring results in order to recognize deviations from the normal condition. The 
capacity to proactively circumvent issues that could cause service disruptions means that 
the system must be able to perform a retrospective analysis after a service disruption, i.e., 
to study data from the past in order to identify which sequence of events might lead to a 
service disruption.  

In many cases a single source of data and information is not sufficient. Therefore, it is 
important for the ANA architecture to develop proper abstractions for providing 
information and sharing information between entities. This information can be derived 
from monitoring data or it is part of a description of an entity. Such a description could be 
a describing the entities configuration, available components, available resources, etc. 
Furthermore, the ANA architecture must provide means to persistently store data and 
information, because for certain tasks, like the retrospective analysis in self-healing it is 
necessary to study past data. Obviously, some kind of syntax has to be used for these 
descriptions and a certain data model has to be used for handling data, like monitoring 
data. 

In summary, information management is needed to address the following requirements:  

• Need to exchange and use monitoring data and other types of metadata as the 
basic element of protocols and algorithms with self-* properties.  

• Enable easier self-configuration and self-organization, e.g., through better service 
discovery solutions.  

• Need better solutions for self-optimization, e.g., for the case of structuring 
communication into uni-cast, any-cast, and multi-cast communication for efficient 
resource utilization from networks viewpoint. 

Please note that we have a different understanding of information in this section 
compared to information in ICs in the other sections of the ANA blueprint (this is due to 
the timely parallel development of the ANA concepts). Therefore, we will first explain 
the scope of information management in section 6.1, before we described the information 
flow requirements in section 6.2. In the following sections (remaining part of section 6), 
we present the information flow concepts (i.e., the ANA deliverable D1.6v1 “Information 
Flow Data Items and Interface specifications”) that are needed for the information 
management. 
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6.1 Scope of Information Management 
Achieving autonomic behaviour requires the exchange of information of different types. 
For instance, auto-configuration requires that an entity has information about its own 
configuration that it knows about components and resources which are potentially 
available for interaction and usage. Similarly, other self-* properties depend on the 
availability of information for the establishment of communication paths and 
optimization of network operation.  

The data that is processed and handled in a communication network can be categorized 
into three classes, where each of these classes is defined by the particular way data is 
used. 

• Content Data: relates to data that is stored or transferred by the network without 
need for interpretation. Content data is represented in ANA as a sequence of bits 
handled by a functional block (FB) or an information channel (IC).  

• Metadata: is data that is used to describe other data objects.  

• (Network) Information: is data that is used for decision making in autonomic 
networks. For that purpose, it is necessary for the decision making components to 
interpret it. In many cases, timely delivery of the required information is crucial to 
achieve sound decisions. 

Figure 6-1 shows the resulting classification of data based on its usage in the domain of 
networking. In the figure, the root type “data” is abstract and the usage of the data item is 
written on each arrow that descends from the root. The main point of our classification of 
data is that the type of a particular data item depends only on its usage. Consequently, a 
single data item may belong to several classes, even at the same time, depending on how 
it is used. For example, a TCP packet header may be content for an Ethernet driver that 
only interprets Ethernet headers, signalling and control information for the TCP protocol, 
and monitoring information for a passive traffic analysis probe. 

 

Figure 6-1: Classifying Data 

One important part of this simple classification scheme of data is that it can be 
recursively applied, which is indicated in Figure 6-1 by the arrows that are drawn from 
content, information, and metadata back to data. For example, data in the class of 
metadata can be interpreted and used for decision making and thus classified as 
information, or information can be transferred via an information channel between two 
functional blocks without any interpretation and would then be regarded than as content. 

Data

Content Metadata Information

transfer 
or store describe interprete
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The Information Flows are an important part of the ANA architecture which presents 
abstractions for providing information and sharing information between entities. It 
defines a collaborative presentation of network information and an extendable 
architecture to distribute information. 

6.2 Information Flow Requirements 
We have identified that the main goal of information flows is to provide a principal 
concept within the ANA architecture to enable functional blocks to exchange information 
to use it for decision making. In the ANA deliverable D1.2 “ANA Requirements” [10], 
we argue that the ANA architecture should be based on a minimal set of assumptions and 
required standards in order to make it future-proof. This argument needs also to be 
applied to the concept of information flows. Thus, the architecture should not describe 
which data can be used in which way for decision making and how it could or should be 
interpreted. Instead, a generic solution is necessary that allows functional blocks to 
dynamically explore how data can be used and for what purpose. 

6.2.1  Information Hook 
An information flow includes at least two functional blocks, of which one has the role as 
information provider and the other as information consumer (respectively decision 
maker). Naturally, the information provider is the entity that could provide the 
information about which data it can provide and how it could be used. Thus, the 
information provider needs to provide a self-descriptive interface. This interface would 
serve as a hook to which the consumer can connect and exploit how to make use of the 
data. Such a hook should exist in each element of the ANA architecture.  

This information hook needs to have two main properties: 

1. Unified generic interface: The hook needs to have a unified interface so that each 
ANA element knows how to access it. Otherwise, information flow establishment 
is impossible. The interface needs to be generic and as simple as possible. In this 
way, the interface can be used in an extensible way: Imagine a simple interface 
that provides by request a more complex interface more specific to the particular 
information hook. 

2. Self-describing: The hook needs to be able to describe what kind of information it 
can provide. In this way, any ANA entity can query the information hook of a 
particular entity in order to learn if that entity can provide the information that it 
needs. Without such a capability, the abstraction of providing information and 
sharing information between entities becomes pointless. The information flow 
architecture needs to consider what kind of syntax and semantics the descriptions 
should have. XML-type of self-describing document structures is a possible 
approach. 
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6.2.2  Information Flow Characteristics 
We need to consider what determines a specific information flow type. We observe three 
distinct characteristics that may vary: 

Participants: There can be two or more participants in an information flow. One or more 
participants are the sources, i.e. information providers and one or more participants are 
the destinations, i.e. information consumers. 

Information type: The information type plays an important role in defining a particular 
kind of information flow, e.g., monitoring, signalling and control, or configuration 
information. 

Non-functional requirements: Different types of information flows may have different 
constraints. The constraints include timing constraints and constraints related to the 
sensitivity of information (e.g., classified information). In many cases, the information 
type determines some of the constraints. It might be that for the same information type 
different constraints occur depending on the situation and scenario in which the 
information is needed, e.g., the same piece of information might be needed as regular 
notifications in one scenario whereas in another scenario it might be only required on 
demand. 

Starting from the next section, we describe the concepts for ANA information flows 
based on the above identified requirements. The key concept is the information hook 
which we introduce and exemplify in sections 6.3.1 and 6.3.2. We also revisit the 
example scenario from section 5.4.5 on communication establishment from the 
information flow point of view in section 6.3.3. 

6.3  Information Flow Concepts 
ANA provides a new architecture for data and information transfer. Instead of providing 
a fixed network stack for communication, the required functional blocks are combined 
into a function chain on demand. The elements which can be composed, i.e., FBs, can 
consist of whole protocol functionality (e.g., TCP, UDP) or may provide only micro-
protocol functions, like error control or encryption. 

In this very dynamic scenario, the Information Flow Framework plays a fundamental role 
in the whole function chain management process. It is related to all information exchange 
aspects that effectively allow the establishment, operation and optimization of the 
function chain. We identify two clear objectives which information flow concepts 
address:  

• Describe ANA entities in order to support an effective establishment of a generic 
function chain for data and/or information transfer: Due to the dynamicity of the 
ANA infrastructure, each ANA entity has to provide information about both its 
purpose (i.e. the services it provides) and how other entities can interact with it.  
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• Allow interactions between ANA entities in order to effectively use the services 
they offer to each other. To this aim an entity enables other entities to access its 
services through its interface. 

Information processing itself is done by FBs and is therefore not part of the information 
flow framework, even if it is using information flows. For example, a monitoring FB that 
computes some aggregate metrics by combining several monitoring information flows is 
not an information flow itself, but it uses information flows to implement a specific kind 
of monitoring service. In other words, information flows are concerned with those 
processes that involve information exchange in ANA at different stages: 

• Before a function chain for data/information transfer is established, in order to 
support the functional composition process; 

• After establishing a function chain for data/information transfer, in order to 
support its management and exploitation. 

There are two aspects of information flows that are described in the following sections, 
first the possibility to learn via an information hook about the service(s) an entity 
provides, and second, the use of the entity’s services by invoking the corresponding 
functions/methods. 

6.3.1 Information Hooks 
In order to specify information hooks, we first outline some basic assumptions about FBs 
and how they function, and then describe the generic information hook, and apply the 
concept of information hooks also to composed FBs and ICs. 

6.3.1.1  Basic assumptions for FBs 
FBs are entities that process information. In order to do this, typically information is fed 
into a FB and the result of the information processing is the corresponding output. This 
input and output is always done through the FB’s interface. Without restricting ourselves 
to a particular implementation strategy for FB interfaces, we assume that it consists out of 
a set of functions. Figure 6-2 illustrates a FB with seven functions. The mandatory two 
functions that must be implemented by each FB are named get_description() and 
send_description() and compose the information hook of that FB (which we describe in 
detail in the next section).  
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Figure 6-2: Functional Block 

Figure 6-3 shows a FB with bindings to IDPs for incoming and outgoing data. The 
interaction with a FB happens through its functions. An IDP is the entry point of an IC 
and it is bound to a function of the FB. The figure shows three functions that are each 
bound to a separate IDP for incoming data. When data is received, the corresponding 
function is dispatched via the IDP. As shown in the figure, a function can be naturally 
bound to several different IDPs. Output data is sent through the ANA node internal 
packet dispatcher that takes care of forwarding the packet to the correct IDP. In general, 
the relationship between functions and IDPs is as follows: to each function n ≥ 0 
unidirectional IDPs can be bound. 

 

Figure 6-3: Functional Block with Bindings 

6.3.1.2  Generic Information Hook 
Each FB and IC in ANA that supports the information flow concept implements an 
information hook. This hook provides a description of the entity. The content, format, etc. 
of the description depends entirely on the entity itself, but the minimal mandatory 
description may be specified within the policies of a particular compartment. Basically, 
there are three interaction styles with ANA entities possible: (1) request/reply, (2) pure 
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input and pure output, and (3) all implemented by the entities functions. For example, an 
entity may allow other entities to access information about it, which is a request/reply 
interaction. Additionally, it might also allow other entities to control its behaviour, which 
is a pure input function. An example for a pure output function is the unsolicited 
announcement of the entity by broadcast. Independent of the interaction style and the 
particular functions that are implemented by ANA entities, the important principle for 
FBs, composed FBs and ICs is that all their functions are described by the entity 
description, including the syntax of the functions and the semantics. 

As pointed out by the requirements analysis of section 6.2.2, the information hook should 
be generic and self-describing. A generic hook allows in principle any ANA entity to 
access and request a description of any other entity having an information hook. As a 
consequence, the generic hook is kept minimal: it provides access to the description of 
the entity. This description provides information about how to interact with the entity 
bearing that hook, i.e. in essence a description of its interface. The element accessing the 
hook would then learn what information and services the entity bearing that hook can 
provide and how they can be accessed, because the entity description comprises a 
description of the semantics of the functions, i.e., what they do, and the syntax of the 
functions, i.e., how to properly invoke them with the correct parameters, etc.  

The question which language and tools to use for entity descriptions to (a) describe the 
functions and (b) interpret these descriptions is not part of the generic information hook. 
Instead it must be determined/standardized for a particular ANA compartment. An 
example for possible language and tool that might be used for the syntactical aspects of 
functions is the Interface Definition Language (IDL) [15] and a kind of stub compiler to 
generate the two procedures for external representation handling in the Level 1 API of 
MINMEX (see section 5.4.2). To describe the semantics of functions and their 
parameters, a combination of the Resource Description Format (RDF) [12] and XML as it 
is proposed in [14] could be used. We give detailed examples of these approaches in 
section 6.3.4.  

The information hook is composed of two functions: get_description() and 
send_description(). Get_description() returns the entity description by invoking 
send_description(), which is illustrated in Figure 6-4. After receiving the description, the 
requesting element (e.g., FB) on the left side in Figure 6-5 knows how to interact with the 
element on the right side. Thus, afterwards the interaction happens through the element 
specific interface, as illustrated in Figure 6-5. The entity description type is mandated by 
the compartment policies, which ensures that the receiving element is able to interpret the 
description. While the typical interaction to receive an entity description would comprise 
request/reply style functions, as in MINMEX Level 1 API, the information flow concepts 
support also to use only send_description() to distribute without previous request the 
entity description. 
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Figure 6-4: First the interaction happens through the Information Hook 
 

 

Figure 6-5: After receiving description the interface can be accessed 

Each ANA entity has a unique identifier within a compartment. This identifier can be 
used to access the information hook in order to get a description of that entity, i.e. the 
get_description() function corresponding to a specific identifier is called. Such a 
procedure is often the starting point of communication. For example, a FB would like to 
get certain information from another FB whose identifier it has resolved. It may be that 
the requesting FB does not know how to access the information or does not even know 
whether such information is provided by the other FB. In such a case, the first step for the 
requesting FB is to invoke the get_description() function corresponding to the resolved 
identifier. 

6.3.1.3  Composed FBs and ICs 
Composed FBs and ICs are ANA entities that must implement an information hook as 
well. The fundamental difference between composed FBs and ICs is that ICs are made of 
FBs that reside on at least two different nodes. Describing composed FBs and ICs is more 
complex than describing a single FB, because these entities are composed of at least two 
FBs and they aim to represent more than just the sum of the individual FBs. Composed 
FBs and ICs have a unique identity and provide a unique information hook that needs to 
cover the description of a complex and eventually distributed collection of FBs. The 
eventual implementation of the information hook of a composed FB is to be chosen at 
implementation time and is not part of information flows at the conceptual level. 
However, we identify two possible implementation approaches: 
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1. The composed FB exposes and describes its internal structure via the information 
hook, including a list of the internal FBs that are part of the composed FB and 
their relationships, i.e., “connections” between FBs. It is then the responsibility 
of the information consumer to further access the information hooks and the 
functions of the internal FBs to obtain the information it requires. This situation 
is illustrated in Figure 6-6. 

2. The composed FB does not expose its internal structure, but provides information 
about it directly via its information hook, respectively through its other functions. 
In this case, the composed FB may for example use internal monitoring services 
to collect and present the distributed information about itself in a coherent and 
efficient way. This situation is illustrated in Figure 6-7. 

 

Figure 6-6: Composed FB exposes its internal structure via the Information Hook 
 

 

Figure 6-7: Composed FB uses available monitoring services to build up its service 
description 

 

6.3.1.4  Interworking FBs 
Section 3.4.2 describes inter-compartment communication in ANA. It is achieved in 
adjacent compartments through the use of Interworking Functional Blocks (IFBs) which 
are conceptually part of both the adjacent compartments. Thus, IFBs are the entities that 
are able to “translate” syntax and semantics between the two compartments. 

From the information flow concept viewpoint, the necessity to have such IFBs means that 
they must be able to perform two kinds of operations if necessary: First, they should be 
able to map entity descriptions from one syntax to another. Second, translating syntax is 
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not always sufficient to enable understanding between adjacent compartments, but the 
IFBs may need also to perform semantic mappings. 

6.3.2 Interactions between ANA entities 
As previously stated, Information Flows address two practical issues. The first one is 
related to the description of an ANA entity, by introducing the Information Hook concept. 
The second aspect deals with the actual interaction between ANA entities which compose 
a generic function chain. We exemplify this second aspect in this section. 

To provide clear details about how interactions with a FB take place, let us consider the 
example depicted in Figure 6-8. The figure shows a particular case in which three input 
functions of a FB are bound to the upper four IDPs. These three functions are executed 
when messages/data are received from the corresponding IC/IDP. Two of these functions, 
called receive_and_dispatch(), represent a generic type of input functions. Their role is to 
receive input data and dispatch it internally (within the FB) to other functions if 
necessary. This kind of generic input function is for example needed when a single FB 
can support an arbitrary number of FB instances, like TCP FB could support several 
independent TCP connections. The received input contains enough information that these 
functions are able to perform the dispatching, e.g., to execute the function of the 
particular FB instance. The third input function, i.e. get_description(), is part of the 
information hook and is the function that is executed when another ANA entity requests a 
description of this FB. 

 

Figure 6-8 - FB Architectural view for Information Flow  

The figure shows two different generic input and dispatch functions in order to illustrate 
the fact that a FB is naturally free to choose the way it wishes to be interacted with. For 
example, one of these receive_and_dispatch functions could be handling received data of 
one instance (running thread) of the FB, such as an end-point of a TCP connection, and 
the other function handles the received data of another instance. Thus, depending on the 
situation a FB may wish to perform demultiplexing of incoming data. In our example, we 
consider two different cases: 
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(1) get_description() function: no (FB internal) demux operation has to be performed 
and the function is directly invoked; 

(2) receive_and_dispatch() functions: FB internal dispatching is performed. 

Outgoing data is sent to the corresponding IDPs via the ANA node internal packet 
dispatch (see section 3.1.2 of the ANA blueprint). 

6.3.3  Communication Setup Example  

6.3.3.1  Overview 
We present an example that shows how Information Flows can be used in ANA. We 
describe the role of information flows in the process of establishing communication 
between two nodes via e.g., an “Ethernet” Network Compartment. This example 
describes a rather basic scenario of ANA that is first introduced in section 5.4.5. We 
explain how information flows support the setup of a communication channel between 
two Node Compartments (which we call Node Compartment 1 and Node Compartment 2) 
through an Ethernet Network Compartment. 

 

Figure 6-9 - Communication setup scenario 

Figure 6-9 illustrates the scenario. We use similar notation as in section 3.2.3 and section 
5.4.5:  

- the Clients A and B represent two applications which have joined the Node 
Compartments A and B, respectively; 

- the Access Objects A and B are the FBs responsible for granting the clients access 
to the corresponding Node Compartment (they handle all control requests sent by 
the clients to the node compartment abstraction, for further details refer to section 
3.2.3); 
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- the FBs which are bound respectively to the IDP c and IDP d represent the access 
objects responsible for granting access to the Network Compartment. 

- the IC1 and IC2 represent the two information channels which allow 
communication between the node compartments. Since an IC is a unidirectional 
communication entity we provide two channels. 

For simplicity, we focus in this example only on the Level 2 API. The Level 2 interfaces 
of the ANA entities shown above are illustrated in Figure 6-10. Note that each of the 
interfaces includes the two functions that compose the information hook 
(get_description() and send_description()) and the entity specific functions. 

 

Figure 6-10: Level 2 Interfaces  

6.3.3.2  Stepwise Walkthrough with Sequence Diagram 
In Figure 6-11 we show in the form of sequence diagrams, how information flows 
support the communication channel setup between client A and client B. The numbered 
steps below correspond to those in the example of section 5.4.5. We only added the 
interactions with the information hook: 

- Step 1: Client A attaches to the default ANA Node Compartment on its runtime 
system each ANA client requests access to the functional block in charge of the 
(private view of the) node compartment;  

- Step 2: Client A receives in return an IDP label a for control communication with 
the ANA node compartment. the requests to access the access object of the node 
compartment respectively return IDP a for Client A and IDP b for Client B; 

- Step 3: Client A registers an IDP label b for future result messages and maps it to 
the treating function Function1 

- Now possible: optional use of node compartments control FBs information hook. 
In order to receive a description of the interface of the node compartments control 
FB, client A can invoke the function get_description() at node compartments 
control FB via IDP a. The node compartment processes the request for 
information and returns the requested information with function 



FP6-IST-27489 ANA Project - Deliverable D1.4/5/6v1 – ANA Blueprint – First Version Page 70 

send_description() via IDP b back to client A. The client can simply learn how to 
instantiate the Ethernet compartment (done at the next step) or learn how to ask 
for available compartments that could be instantiated. 

- Step 4: Client A then asks the node compartment to instantiate the Ethernet 
compartment  

- Step 5: Client A receives an IDP label c for control communication with the 
Ethernet compartment 

- Step 6: Client A then registers an IDP label d for future control responses of the 
Ethernet compartment and maps it to the treating function Function2 

- At this point: optional use of information hook of the access object to Ethernet 
compartment. Client A can invoke get_description() from the access object to the 
Ethernet compartment via IDP c, and the access object is processing this request 
and returning the information to client A by calling send_description() and using 
IDP d. At this point the description can tell the client how to lookup other 
members of the Ethernet compartment and know the load of the Ethernet 
compartment or how to query it. 

- Step 7: Client A then requests the Ethernet compartment to lookup the client B 

- Step 8: Client A receives in return the IDP label e to communicate with client B 
- At this point: optional use of information hook of the IC. The information learned 

can be how to transmit data via the IC and which is the priority or available 
bandwidth on this IC or how to query such information via the IC’s interface. 

- Step 9: Client A can access/ talk to client B to access the available services at 
client B.  
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Figure 6-11 - Information Flows (Level 2 API view) 
 

6.3.3.3 Example descriptions of ANA entities using IDL and 
RDF/XML 

As we have pointed out in earlier sections, the exact format of the description of a 
particular ANA entity that can be obtained via its information hook is mandated by 
agreed policies of the given compartment. It is therefore not “hardwired” in the core 
architecture. However, these entities do not necessarily have any prior information of 
each other since compartments cannot be considered static. After all, exchanging this 
information between entities is a task where the entity description obtainable via the 
information hook has the key role. Thus, the task of providing a self-description that is 
understandable by other entities in a particular compartment is non-trivial. That is why 
we discuss in this section potential solutions for this task. 

The challenge is composed of enabling two levels of understanding between all ANA 
entities that comprise a compartment: The entities must understand the syntax and the 
semantics of a description of a given ANA entity. In other words, a given ANA entity 
must be able to parse a given description and understand the syntax. In addition, there 
must be a minimal agreement of a common vocabulary, i.e. the entity parsing the 
description must be able to understand the meaning of the parsed elements. In order to 
establish understanding of the syntax of a description, a common description language is 
needed. On the other hand, ontologies can essentially be considered as dictionaries that 
enable the establishment of a common understanding of the semantics. 

Node 
Compartment 

Ethernet 
Compartment 

IC 

New_ANA_compartment() 

Node-instantiate 

Get_Description() 

Send_Description() 

Get_Description() 

Get_Description() 

(instantiate) [step 1-3] 

[step 4-6] 

Look_up() [step 7-9] 

[step 10] 

Send_Description() 

Send_Description() 

Send() (transfer data) 
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We consider here an example where we describe ANA entities from two perspectives: 
First, we use IDL (Interface Definition Language) [15], which is well established 
language used to describe a software component's interface, to describe the interface of 
an ANA entity. This information enables the entity that interprets the description to be 
able to interact with the entity, e.g., to perform remote procedure calls via the Level 2 
API. Note that this information does not necessarily guarantee that the interpreting entity 
understands what a particular function does, i.e. its semantics, even though it is able to 
execute it. It is naturally possible that a standard set of functions/procedures are known 
by all members of a particular compartment. As a second step, we use RDF (Resource 
Description Framework) to describe the entity’s purpose, the semantics of each function 
of the interface etc. Our RDF examples are encoded with XML [14]. This second type of 
description tells the interpreting entity what exactly the other entity can do. For simplicity 
we describe only one FB and one IC. Note that none of the examples is aimed to 
exemplify the full potential of the approaches but rather to show possible approaches to 
tackle the problem. A full fleshed RDF/XML example of something as rich as the ANA 
world can be exceedingly complex. 

The IDL description of the Level 2 objects are shown below. 

• Node Compartment 
   
  interface anaCompartment 

  { 

    string getDescription(); 

    string register(String id); 

    string deregister(String id); 

    string instantiate(String id); 

    string lookup(String id); 

}; 

 

• “Ethernet” Compartment: 
   
  interface anaCompartment 

  { 

    string getDescription(); 

    string register(String id); 

    string deregister(String id); 

    string instantiate(String id); 

    string lookup(String id); 

  }; 

 

• IC 
 

  interface anaCompartment 

  { 

    string getDescription(); 

    int send();              

  }; 
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For the RDF examples, we define a very simple ontology, adl (ANA Description 
Language) in RDF in a similar fashion than the authors defined ndl in [12]. In RDF, 
information is described in triplets that consist of subject (the class being described), 
property (the property the statement describes), and object (the value of the property 
according to the statement). We define the following 3 classes and 10 properties in this 
example adl: 

Classes Properties 

FB Id 

IC belongsTo 

Compartment priority 

 bandwidth 

 capacity 

 Find 

 Start 

 Registration 

 Deregistration

 Transmit 

 

 

Figure 6-12: Classes and properties in adl. 

Figure 6-12 illustrates the classes and properties that we define in adl. The id property 
attaches an identifier to a FB, an IC, or a compartment. BelongsTo property describes the 
relation of IC or FB being part of a compartment. Priority, bandwidth, and capacity are 
properties of an IC. By using the above resources and properties, we obtain the following 
descriptions of the objects in the Level 2 API example.  
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<?xml version="1.0" encoding="UTF-8"?> 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

 

<!—Ethernet compartment--> 

<adl:Compartment rdf:about="#AnaEth"> 

<adl:id>AnaEth</adl:id> 

<adl:registration>register</adl:registration> 

<adl:deregistration>deregister</adl:deregistration> 

<adl:start>instantiate</adl:start> 

<adl:find>lookup</adl:find> 

</adl:Compartment> 

 

<!—Node compartment--> 

<adl:Compartment rdf:about="#NodeCmp"> 

<adl:id>NodeCmp</adl:id> 

<adl:registration>register</adl:registration> 

<adl:deregistration>deregister</adl:deregistration> 

<adl:start>instantiate</adl:start> 

<adl:find>lookup</adl:find> 

</adl:Compartment> 

 

<!--IC--> 

<adl:IC rdf:about="#IcA"> 

<adl:id>IcA</adl:id> 

<adl:capacity>100Mbit/s<adl:capacity> 

<adl:bandwidth>50Mbit/s<adl:bandwidth> 

<adl:priority>2</adl:priority> 

<adl:transmit>send<adl:transmit> 

   <adl:belongsTo rdf:resource="#AnaEth"/> 

</adl:Interface> 

 

</rdf:RDF> 

 

Note that in the above we describe also the functions of the interface even if in a trivial 
way, e.g., start property’s object is instantiate which refers to the name of the function in 
the IDL description. Thus, we assume in the above example that the semantics of the 
standard functions are not known but they become clear only after the interpretation of 
the adl language description. For example, the property start in adl language has a 
particular semantic meaning and in that way explains what the function instantiate() does. 
Describing the interface functions in this way also allows the interface of a particular 
ANA entity to be defined in any way. For instance, a compartment’s interface could 
contain a function join() and another compartment’s interface a function instantiate() 
both with the same semantics which can be described in the adl language with the 
property start. 

In addition to describing the interface functions, we also included other properties into 
the above example. For example, the IC description contains capacity, bandwidth, and 
priority, which can be seen as configuration and monitoring information. We have added 
directly values for these properties but another approach would be to instead describe 
those interface functions that provide the particular information. For instance, one could 
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imagine having a function called QoS() which accepts a string argument that can have a 
value “priority”. 

6.3.4  Supported Information Sharing Methods 
As described in the requirements analysis for the ANA architecture, ANA should support 
different information sharing methods. The following two methods are identified as 
necessary information sharing methods in ANA: 

- It should be possible to push information from an information provider to an 
information consumer (push model). 

- It should be possible that information consumers pull information from an 
information provider (pull model). 

Pull type of interaction happens as described in Figure 6-4 and Figure 6-5. In other 
words, first an entity description is requested using get_description() message and then 
returned using send_description(). Afterwards, in the second phase, the requesting party 
uses the interface of the information providing party to “pull” the information in 
request/reply fashion. Push model is different in the way that the description is directly 
sent using send_description() with no prior get_description(). If the corresponding FB 
supports the push model, it will accept the entity description which describes the 
information it is about to receive. Then, in the second phase, the information itself is 
pushed. The second phase implies that the receiving FB that supports the push model 
interprets the description and prepares, if necessary, a corresponding input to accept the 
information. 

We identified also in the requirements analysis the need for supporting different 
communication paradigms. For instance, it should be possible to address a group of 
consumers in multicast style. Information channel is the abstraction within ANA that 
provides means to communicate. As specified in the section 3.1.2, it captures various 
types of communication channels, such as multi-cast, any-cast, uni-cast, or con-cast. 
Thus, when using push model, for instance, a FB can broadcast or multicast its 
description to a group of recipients via a corresponding IC, for example. This applies to 
both phases, i.e. sending the description and the information itself. 

We also identified in the requirements analysis the necessity to prioritize certain 
information flows because some information is more time critical than other. We also 
note here that such features are essentially features that can be provided by information 
channel. These properties can be nevertheless accessed and potentially also modified 
through the interface of the IC which can be obtained through its information hook. 
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7 CONCLUSIONS 

As stated previously in this document, the main objective of the Blueprint is to describe 
the reference model of the ANA operation. The purpose of this initial design effort is to 
identify and describe the basic abstractions and paradigms of ANA and their interactions 
and impact in and on the overall architecture. A key objective is also to permit the start of 
the first prototyping phase that will take place in 2007. 

At the coarsest level, the core abstraction of ANA is the “Compartment” which 
encompasses the notions of networks and realms and is the basic unit for the interaction 
and federation of networks. A key feature is that compartments reduce complexity by 
hiding the compartment internal communication complexity to the “outside world”, 
which interfaces with a given compartment via the communication abstractions provided 
by the compartment. Hence networks can be decomposed into smaller and easier 
manageable units: each compartment has indeed full autonomy on how to handle internal 
communication (i.e. naming, addressing, routing, etc). The boundaries of a compartment 
are typically based on technological and/or administrative boundaries or policy domains. 
ANA anticipates that many compartments co-exist and will provide the necessary 
functionalities such that compartments are able to interwork on various levels.  

At a more detailed level, compartments contain three kinds of abstractions: Functional 
Blocks (FBs), Information Channels (ICs), and Information Dispatch Points (IDPs). 
These abstractions are used to model the “internals” of a compartment and the service the 
compartment offers. At this granularity level, an important component is the information 
flow framework, which defines a generic method to obtain detailed information about the 
capabilities and properties of FBs and ICs. The degree of details at which a compartment 
exposes its internal abstractions is specific to each compartment and ranges from full 
visibility to total opaqueness. 

At the lowest level, the underpinning component is the ANA Node, which is the entity 
that hosts the ANA elements and functionalities. It is the main interface to the host 
operating system or underlying hardware, and also provides an adaptation layer allowing 
legacy applications to be reused in an ANA context. The core and mandatory part of the 
ANA Node is the MINMEX framework, which provides the basic low-level 
functionalities required to bootstrap and run an ANA node. Beside the MINMEX 
framework, the ANA node provides a development framework – the “Playground” –
where the more elaborated and complex networking functionalities of ANA are placed. 
For example, compartment-specific modules are executed in the Playground. 

All together, these concepts and abstractions form the first version of the ANA Blueprint. 
This reference model will be used to develop the first version of the ANA prototype, 
which, along with a testbed infrastructure, will be used to validate the core ANA 
functionalities and demonstrate autonomicity (e.g., self-configuration and self-
organisation) on a compartment basis.  
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The feedback obtained during this first prototyping phase will be used to refine the core 
architectural concepts and will eventually lead to the specification of a mature version of 
the Blueprint sometime around July 2008. This will mark the start of the second 
prototyping phase where advanced autonomic functionalities will be demonstrated. 
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